Section01_常数项级数

定义

  1. {an}\{a_{n}\} 为常数项数列,n=1an\displaystyle \sum_{n=1}^{\infty}a_{n} 成为常数项级数
  2. Sn=a1+a2++anS_{n} = a_{1} + a_{2} +\cdots + a_{n} 称为部分和

Notes

  1. SnS_{n}n=1an\displaystyle \sum_{n=1}^{\infty}a_{n} 不同
  2. limnSn\displaystyle \lim_{n\to \infty}S_{n}n=1an\displaystyle \sum_{n=1}^{\infty}a_{n} 相同
  1. 收敛与发散

    1. limnSn=S\displaystyle \lim_{n\to \infty}S_{n} = S,则称 n=1an\displaystyle \sum_{n=1}^{\infty}a_{n} 收敛于 SS
    2. limnSn \displaystyle \lim_{n\to \infty}S_{n} \ \nexists,则称 n=1an\displaystyle \sum_{n=1}^{\infty}a_{n} 发散
  2. 例1 n=11n(n+1)\displaystyle \sum_{n=1}^{\infty}\frac{1}{n(n+1)} 1n(n+1)=1n1n+1Sn=11×2+12×3++1n(n+1)=112+1213++1n1n+1=11n+1limnSn=1n=11n(n+1)=1 \begin{array}{ll} \because & \frac{1}{n(n+1)} = \frac{1}{n} - \frac{1}{n+1} \\ \therefore & S_{n} = \frac{1}{1\times 2} + \frac{1}{2\times 3} + \cdots + \frac{1}{n(n+1)} \\ & = 1 - \frac{1}{2} + \frac{1}{2} - \frac{1}{3} + \cdots + \frac{1}{n} - \frac{1}{n+1} \\ & = 1 - \frac{1}{n+1}\\ \therefore &\displaystyle \lim_{n\to \infty}S_{n} = 1 \\ \therefore & \displaystyle \sum_{n=1}^{\infty}\frac{1}{n(n+1)} = 1 \\ \end{array}

性质

  1. n=1an=A,n=1bn=B\displaystyle \sum_{n=1}^{\infty}a_{n}= A, \sum_{n=1}^{\infty}b_{n} = B,则 n=1(an±bn)=A±B\displaystyle \sum_{n=1}^{\infty}(a_{n}\pm b_{n}) = A\pm B
  2. n=1an=S\displaystyle \sum_{n=1}^{\infty}a_{n} = S,则 n=1kan=kS\displaystyle \sum_{n=1}^{\infty}k a_{n} = kS

    Notes

    • k0k \ne 0,则n=1kan\displaystyle \sum_{n=1}^{\infty}ka_{n}n=1an\displaystyle \sum_{n=1}^{\infty}a_{n} 的敛散性相同
  3. 级数加减,改变有限项,敛散性不变

    • n=112n=12+122+=1\displaystyle \sum_{n=1}^{\infty}\frac{1}{2^{n}} = \frac{1}{2} + \frac{1}{2^{2}} +\cdots = 1
      • Case 1: 2+1+12+122+=3+1=42 + 1 + \frac{1}{2} + \frac{1}{2^{2}} + \cdots = 3 + 1 = 4
      • Case 2: 122+123+=112=12\frac{1}{2^{2}}+\frac{1}{2^{3}}+\cdots = 1 - \frac{1}{2} = \frac{1}{2}
      • Case 3: 2+122+123+=212+1=522 + \frac{1}{2^{2}} + \frac{1}{2^{3}} + \cdots = 2-\frac{1}{2}+1 = \frac{5}{2}
  4. 级数内添括号,提升收敛性
    1. n=1an\displaystyle \sum_{n=1}^{\infty}a_{n} 收敛 => 添加括号后收敛
    2. 添加括号后发散 => n=1an\displaystyle \sum_{n=1}^{\infty}a_{n} 发散
    3. 例题 设 n=1an\displaystyle \sum_{n=1}^{\infty}a_{n} 收敛,n=1(a2n1+a2n)\displaystyle \sum_{n=1}^{\infty}(a_{2n-1}+a_{2n}) 的敛散性如何? n=1(a2n1+a2n)=(a1+a2)+(a3+a4)+n=1(a2n1+a2n)收敛 \begin{array}{ll} \because & \displaystyle \sum_{n=1}^{\infty}(a_{2n-1}+a_{2n}) = (a_{1}+a_{2}) + (a_{3}+a_{4}) + \cdots \\ \therefore & \displaystyle \sum_{n=1}^{\infty}(a_{2n-1}+a_{2n}) \text{收敛}\\ \end{array}
  5. (必要条件) 若 n=1an\displaystyle \sum_{n=1}^{\infty}a_{n} 收敛 \nLeftarrow\Rightarrow limnan=0\displaystyle \lim_{n\to \infty}a_{n} = 0

    Proof

    \Rightarrow Sn=a1+a2++ann=1an收敛limnSn , 令limn=San=SnSn1limnan=limnSnlimnSn1=SS=0\begin{array}{ll} & S_{n} = a_{1} + a_{2} + \cdots + a_{n} \\ \because & \displaystyle \sum_{n=1}^{\infty}a_{n} \text{收敛} \\ \therefore & \displaystyle \lim_{n\to \infty}S_{n}\ \exists \text{, 令}\lim_{n\to \infty} = S \\ & \text{而} a_{n} = S_{n} - S_{n-1} \\ \therefore & \displaystyle \lim_{n\to \infty}a_{n} = \lim_{n\to \infty}S_{n} - \lim_{n\to \infty}S_{n-1} = S-S = 0 \\ \end{array} \nLeftarrow: 反例 n=11n\displaystyle \sum_{n=1}^{\infty} \frac{1}{n}

Notesn=1an\displaystyle \sum_{n=1}^{\infty}a_{n} 收敛 {limnSn limnan=0\Rightarrow \begin{cases} \displaystyle \lim_{n\to \infty} S_{n} \ \exists \\ \displaystyle \lim_{n\to \infty} a_{n} = 0 \end{cases}

两个重要级数

PP-级数

n=11np{收敛p>1发散p<1发散p=1 \sum_{n=1}^{\infty}\frac{1}{n^{p}} \begin{cases} \text{收敛}& p >1 \\ \text{发散}& p <1 \\ \text{发散} & p = 1\\ \end{cases}

  • 其中 p=1p=1 时,n=11n\displaystyle \sum_{n=1}^{\infty}\frac{1}{n} 被称为调和级数,发散

几何级数

n=1aqn(a0)\sum_{n=1}^{\infty}a\cdot q^{n}\quad (a\ne 0)

  1. q1\vert q \vert \ge 1,则 n=1aqn\displaystyle \sum_{n=1}^{\infty}a\cdot q^{n} 发散
  2. q<1\vert q \vert < 1,则 n=1aqn=首项1q\displaystyle \sum_{n=1}^{\infty}a\cdot q^{n} = \frac{\text{首项}}{1-q}

    Proof an=aqnSn=aq+aq2++aqnqSn=aq2+aq3++aqn+1(1q)Sn=aqaqn+1Sn=aqaqn+11qq<1limnSn=aq1q=n=1aqn \begin{array}{ll} & a_{n} = aq^{n} \\ & S_{n} = aq + aq^{2} + \cdots +aq^{n} \\ & qS_{n} = aq^{2} + aq^{3} + \cdots + aq^{n+1} \\ \therefore & (1-q)S_{n} = aq - aq^{n+1}\\ & S_{n} = \frac{aq - aq^{n+1}}{1-q} \\ \because & q<1 \\ \therefore & \displaystyle \lim_{n\to \infty}S_{n} = \frac{aq}{1-q} = \sum_{n=1}^{\infty}a\cdot q^{n} \\ \end{array}

第一类-正项级数

定义

  • n=1an(an0)\displaystyle \sum_{n=1}^{\infty}a_{n}\quad(a_{n}\ge 0) 为正项级数

Notes

  1. S1S2S3S_{1}\le S_{2} \le S_{3}\le\cdots,即 {Sn}\{S_{n}\} 单调递增
  2. {{Sn}无上界limnSn=+, 即发散SnMlimnSn , 即收敛\begin{cases} \{S_{n}\} \text{无上界}&\Rightarrow& \lim\limits_{n\to \infty}S_{n} = +\infty \text{, 即发散} \\ S_{n} \le M &\Rightarrow& \lim\limits_{n\to \infty}S_{n}\ \exists \text{, 即收敛} \end{cases}

判别法

法一: 比较法

Th1 an0,bn0a_{n}\ge 0,b_{n}\ge 0

  1. anbna_{n}\le b_{n}n=1bn\displaystyle \sum_{n=1}^{\infty}b_{n} 收敛 \Rightarrow n=1an\displaystyle \sum_{n=1}^{\infty}a_{n} 收敛
  2. anbna_{n}\ge b_{n}n=1bn\displaystyle \sum_{n=1}^{\infty}b_{n} 发散 \Rightarrow n=1an\displaystyle \sum_{n=1}^{\infty}a_{n} 发散
  1. n=1sinπ2n\displaystyle \sum_{n=1}^{\infty}\sin \frac{\pi}{2^{n}} sinxx0sinπ2nπ2nn=1π2n收敛n=1sinπ2n收敛 \begin{array}{ll} \because & \sin x \le x\\ \therefore & 0\le\sin \frac{\pi}{2^{n}} \le \frac{\pi}{2^{n}} \\ \because & \displaystyle \sum_{n=1}^{\infty}\frac{\pi}{2^{n}} \text{收敛} \\ \therefore & \displaystyle \sum_{n=1}^{\infty}\sin \frac{\pi}{2^{n}} \text{收敛} \\ \end{array}
  2. n=110n1+x44dx\displaystyle \sum_{n=1}^{\infty}\frac{1}{\int_{0}^{n}\sqrt[4]{1+x^{4}}\cdot dx} 0n1+x44dx>0nxdx=12n20010n1+x44dx<112n2n=12n2收敛n=110n1+x44dx收敛 \begin{array}{ll} \because & \int_{0}^{n}\sqrt[4]{1+x^{4}}\cdot dx > \int_{0}^{n}x\cdot dx = \frac{1}{2}n^{2} \ge 0\\ \therefore & 0 \le \frac{1}{\int_{0}^{n}\sqrt[4]{1+x^{4}}\cdot dx} < \frac{1}{\frac{1}{2}n^{2}}\\ \because & \displaystyle \sum_{n=1}^{\infty}\frac{2}{n^{2}} \text{收敛} \\ \therefore & \displaystyle \sum_{n=1}^{\infty}\frac{1}{\int_{0}^{n}\sqrt[4]{1+x^{4}}\cdot dx} \text{收敛} \\ \end{array}
  3. anbncna_{n}\le b_{n}\le c_{n}n=1an,n=1cn\displaystyle \sum_{n=1}^{\infty}a_{n}, \sum_{n=1}^{\infty}c_{n} 收敛,证 n=1bn\displaystyle \sum_{n=1}^{\infty}b_{n} 收敛 anbncn0bnancnann=1an,n=1cn收敛n=1(cnan)收敛n=1(b1cn)收敛n=1cn收敛n=1bn收敛 \begin{array}{ll} \because & a_{n} \le b_{n} \le c_{n} \\ \therefore & 0 \le b_{n} - a_{n} \le c_{n} - a_{n} \\ \because & \sum_{n=1}^{\infty}a_{n}, \sum_{n=1}^{\infty}c_{n} \text{收敛} \\ \therefore & \sum_{n=1}^{\infty}(c_{n} - a_{n}) \text{收敛} \\ \therefore & \sum_{n=1}^{\infty}(b_{1}- c_{n}) \text{收敛} \\ \because & \sum_{n=1}^{\infty}c_{n} \text{收敛} \\ \therefore & \sum_{n=1}^{\infty}b_{n} \text{收敛} \\ \end{array}

Th1' an>0,bn>0a_{n}>0,b_{n}>0

  • limnbnan=(0<<+)n=1an,n=1bn\displaystyle \lim_{n\to \infty}\frac{b_{n}}{a_{n}} = \ell\quad (0<\ell<+\infty)\Rightarrow \sum_{n=1}^{\infty}a_{n}, \sum_{n=1}^{\infty}b_{n}敛散性相同
  1. n=1[1nln(1+1n)]\displaystyle \sum_{n=1}^{\infty}\bigg[\frac{1}{n} - \ln\bigg(1+\frac{1}{n}\bigg)\bigg] 的敛散性 x>0时,x>ln(1+x)0<1nln(1+1n)limx0xln(1+x)x2=limx0111+x2x=12limn1nln(1+1n)1n2=12n=1[1nln(1+1n)]n=11n2n=11n2收敛n=1[1nln(1+1n)]收敛 \begin{array}{ll} \because & x>0 \text{时,} x > \ln(1+x) \\ \therefore & 0 < \frac{1}{n} - \ln(1+\frac{1}{n}) \\ \because & \lim\limits_{x\to 0} \frac{x - \ln(1+x)}{x^{2}} = \lim\limits_{x\to 0} \frac{1 - \frac{1}{1+x}}{2x} = \frac{1}{2} \\ \therefore & \lim\limits_{n\to \infty} \frac{\frac{1}{n} - \ln(1+\frac{1}{n})}{\frac{1}{n^{2}}} = \frac{1}{2} \\ \therefore & \sum_{n=1}^{\infty}[\frac{1}{n} - \ln(1+\frac{1}{n})] \sim \sum_{n=1}^{\infty}\frac{1}{n^{2}}\\ \because & \sum_{n=1}^{\infty}\frac{1}{n^{2}} \text{收敛} \\ \therefore & \sum_{n=1}^{\infty}[\frac{1}{n}- \ln(1+ \frac{1}{n})] \text{收敛} \\ \end{array}

法二: 比值法

Th 2 an>0,limnan+1an=ρ\displaystyle a_{n} > 0, \lim_{n\to \infty}\frac{a_{n+1}}{a_{n}} = \rho

limnan+1an=ρ{收敛ρ<1发散ρ>1?ρ=1 \lim_{n\to \infty}\frac{a_{n+1}}{a_{n}} = \rho \begin{cases} \text{收敛} & \rho < 1 \\ \text{发散} & \rho > 1 \\ \text{?} & \rho = 1 \\ \end{cases}

Notes 适合an\color{#D0104C}{a_{n}}中含有阶乘的情形

  1. n=12nn!nn\displaystyle \sum_{n=1}^{\infty}\frac{2^{n}\cdot n!}{n^{n}} limnan+1an=limn2n+1(n+1)!(n+1)n+1nn2nn!=limn2(nn+1)n=2limn1(1+1n)n=2e<1n=12nn!nn收敛 \begin{array}{ll} \because & \lim\limits_{n\to \infty}\frac{a_{n+1}}{a_{n}} = \lim\limits_{n\to \infty}\frac{2^{n+1}(n+1)!}{(n+1)^{n+1}} \cdot \frac{n^{n}}{2^{n}\cdot n!} = \lim\limits_{n\to \infty}2 (\frac{n}{n+1})^{n}\\ & = 2\lim\limits_{n\to \infty} \frac{1}{(1+\frac{1}{n})^{n}} = \frac{2}{e} < 1\\ \therefore & \sum_{n=1}^{\infty}\frac{2^{n}\cdot n!}{n^{n}} \text{收敛} \\ \end{array}

法三: 根值法

Th 3 an>0a_{n}>0

limnann=ρ{收敛ρ<1发散ρ>1?ρ=1 \lim_{n\to \infty}\sqrt[n]{a_{n}} = \rho \begin{cases} \text{收敛} & \rho <1 \\ \text{发散} & \rho >1 \\ \text{?} & \rho =1 \end{cases}

  1. n=1(n2n+1)n\displaystyle \sum_{n=1}^{\infty}\bigg(\frac{n}{2n+1}\bigg)^{n} limnann=limnn2n+1=12<1n=1(n2n+1)n收敛 \begin{array}{ll} \because & \lim\limits_{n\to \infty} \sqrt[n]{a_{n}} = \lim\limits_{n\to \infty} \frac{n}{2n+1} = \frac{1}{2} < 1 \\ \therefore & \sum_{n=1}^{\infty}(\frac{n}{2n+1})^{n} \text{收敛} \\ \end{array}

第二类-交错级数

定义

n=1(1)n1an=a1a2+a3a4+ORn=1(1)nan=a1+a2a3+a4(an>0) \begin{array}{c} \displaystyle \sum_{n=1}^{\infty}(-1)^{n-1}a_{n} = a_{1} - a_{2} + a_{3} - a_{4} + \cdots\\ \text{OR}\\ \displaystyle \sum_{n=1}^{\infty}(-1)^{n}a_{n} = -a_{1} + a_{2} - a_{3} + a_{4} - \cdots \end{array}\quad (a_{n} >0)

  • 称为交错级数

判别法

Th 对于n=1(1)n1an(an>0)\displaystyle \sum_{n=1}^{\infty}(-1)^{n-1}a_{n}\quad (a_{n}>0),若

  1. {an}\{a_{n}\} 单调递减
  2. limnan=0\lim\limits_{n\to \infty} a_{n} = 0

n=1(1)n1an\displaystyle \sum_{n=1}^{\infty}(-1)^{n-1}a_{n} 收敛

Notes

  1. n=1an\displaystyle \sum_{n=1}^{\infty}a_{n}^{} 收敛 \nRightarrow n=1an2\displaystyle \sum_{n=1}^{\infty}a_{n}^{2} 收敛

    反例 n=1(1)nn\displaystyle \sum_{n=1}^{\infty}\frac{(-1)^{n}}{\sqrt{n}}

  2. n=1an(an0)\displaystyle \sum_{n=1}^{\infty}a_{n}^{} \quad (a_{n}\ge 0) 收敛 \Rightarrow n=1an2\displaystyle \sum_{n=1}^{\infty}a_{n}^{2} 收敛

    Proof 取 ϵ=1>0, N>0,n>N,an0<10an2an<1n=1an收敛n=1an2收敛 \begin{array}{ll} & \text{取}\ \epsilon = 1 > 0, \exists\ N > 0, \text{当}n>N \text{时}, \vert a_{n} - 0 \vert<1 \\ \Rightarrow & 0 \le a_{n}^{2} \le a_{n} < 1 \\ \because & \sum_{n=1}^{\infty}a_{n} \text{收敛} \\ \therefore & \sum_{n=1}^{\infty}a^{2}_{n} \text{收敛} \\ \end{array}

  1. n=1sinn2+1π\displaystyle \sum_{n=1}^{\infty}\sin \sqrt{n^{2} + 1}\pi sinn2+1π=sin[nπ+(n2+1n)π]=(1)nsinπn2+1+nsinπn2+1+n>0n=1sinn2+1π为交错级数sinπ1+n2+n单调递减且limnsinπ1+n2+n=0n=1sinn2+1π收敛 \begin{array}{ll} & \sin \sqrt{n^{2} + 1} \pi = \sin [n\pi + (\sqrt{n^{2}+ 1} -n)\pi] \\ & = (-1)^{n}\sin \frac{\pi}{\sqrt{n^{2}+1} + n} \\ \because & \sin \frac{\pi}{\sqrt{n^{2} + 1} + n} > 0 \\ \therefore & \sum_{n=1}^{\infty}\sin \sqrt{n^{2} + 1} \pi \text{为交错级数} \\ \because & \sin \frac{\pi}{\sqrt{1+n^{2}}+ n} \text{单调递减且} \lim\limits_{n\to \infty} \sin \frac{\pi}{\sqrt{1+n^{2}}+ n} = 0\\ \therefore & \sum_{n=1}^{\infty}\sin \sqrt{n^{2} + 1} \pi \text{收敛} \\ \end{array}

任意级数-条件收敛与绝对收敛

定义

  1. n=1an\displaystyle \sum_{n=1}^{\infty}a_{n} 收敛,但 n=1an\displaystyle \sum_{n=1}^{\infty}\vert a_{n} \vert 发散,称 n=1an\displaystyle \sum_{n=1}^{\infty}a_{n} 条件收敛
  2. n=1an\displaystyle \sum_{n=1}^{\infty}a_{n} 收敛,且 n=1an\displaystyle \sum_{n=1}^{\infty}\vert a_{n} \vert 收敛,称 n=1an\displaystyle \sum_{n=1}^{\infty}a_{n} 绝对收敛

关系

Th

  • n=1an\displaystyle \sum_{n=1}^{\infty}a_{n} 绝对收敛 \nLeftarrow \Rightarrow n=1an\displaystyle \sum_{n=1}^{\infty}a_{n} 收敛
  1. n=1sinn2+1π\displaystyle \sum_{n=1}^{\infty}\sin \sqrt{n^{2}+1}\pi 是绝对收敛还是条件收敛? sinn2+1π=(1)nsinπn2+1+nn=1sinn2+1π为交错级数limnsinπn2+1+n=0sinπn2+1+n单调递减n=1sinn2+1π收敛an=sinπn2+1+nπn2+1+nπ2nn=1π2n发散n=1an发散n=1sinπn2+1+n条件收敛 \begin{array}{ll} & \sin \sqrt{n^{2} + 1}\pi = (-1)^{n} \sin \frac{\pi}{\sqrt{n^{2}+1}+n} \\ \because & \sum_{n=1}^{\infty}\sin \sqrt{n^{2} + 1}\pi \text{为交错级数} \\ & \lim\limits_{n\to \infty} \sin \frac{\pi}{\sqrt{n^{2} + 1} + n} = 0 \text{且} \sin \frac{\pi}{\sqrt{n^{2}+ 1}+n} \text{单调递减} \\ \therefore & \sum_{n=1}^{\infty}\sin \sqrt{n^{2}+ 1} \pi \text{收敛} \\ \because & \vert a_{n} \vert = \sin\frac{\pi}{\sqrt{n^{2} +1}+n} \le \frac{\pi}{\sqrt{n^{2} + 1} + n} \le \frac{\pi}{2n} \\ \because & \sum_{n=1}^{\infty}\frac{\pi}{2n} \text{发散} \\ \therefore & \sum_{n=1}^{\infty}\vert a_{n} \vert \text{发散}\\ & \sum_{n=1}^{\infty}\sin \frac{\pi}{\sqrt{n^{2}+1}+n} \text{条件收敛} \end{array}

results matching ""

    No results matching ""