Section05_差分方程

引入

  • 差分方程是微分方程的一种延展形式,是自变量离散化后的结果 dydxyx+1yx(x+1)x=yx+1yx \frac{dy}{dx} \longrightarrow \frac{y_{x+1} - y_{x}}{(x+1)-x} = y_{x+1} - y_{x}
  • 差分定义 Δyx=yx+1yx\Delta y_{x} = y_{x+1} - y_{x}
  • 二阶差分 Δ(Δyx)=Δ2yx=(yx+2yx+1)(yx+1yx)=yx+22yx+1+yx\Delta(\Delta y_{x}) = \Delta^{2} y_{x} = (y_{x+2}-y_{x+1}) - (y_{x+1} - y_{x}) = y_{x+2} - 2y_{x+1} + y_{x}

差分方程

nn 阶差分方程

F(x,yx,yx+1,,yx+n)=0 F(x,y_{x},y_{x+1},\cdots,y_{x+n}) = 0

一阶差分方程

齐次 yx+1+ayx=0y_{x+1}+ay_{x} = 0

  • 解法 递推法 yx+1=(a)yx=(a)2yx1==(a)x+1y0y0=f(0)yx=(a)xy0k=C(a)x \begin{split} & y_{x+1} = (-a)y_{x} = (-a)^{2}y_{x-1} =\cdots = (-a)^{x+1}y_{0} \\ & y_{0} = f(0) \\\\ & \color{#D0104C}y_{x} = (-a)^{x}y_{0}k = C(-a)^{x} \end{split}

    非齐次 yx+1+ayx=f(x)y_{x+1}+ay_{x} = f(x)

  • f(x)=bf(x) = b 递推法 y1=ay0+by2=ay1+b=(a)2y0ab+by3=ay2+b=(a)3y0+a2bab+byx=(a)xy0+bi=0x1(a)i\begin{split} & y_{1} = -ay_{0} + b \\ & y_{2} = -ay_{1} + b = (-a)^{2}y_{0} -ab + b \\ & y_{3} = -ay_{2} + b = (-a)^{3}y_{0} + a^{2}b -ab + b \\ &\vdots \\ &y_{x} = (-a)^{x}y_{0} + b \sum_{i=0}^{x-1}(-a)^{i} \end{split}
    1. a=1a = -1
      1. 特解 yx=y0+bxy_{x} = y_{0} + bx
      2. 通解 yx=C+y0+bx=C+bxy_{x} = C+y_{0} +bx = C + bx
    2. a1a\ne -1
      1. 特解 yx=(a)xy0+b1(a)x1(a)=(a)xy0b1+a(a)x+b1+ay_{x} = (-a)^{x} y_{0} + b \frac{1-(-a)^{x}}{1-(-a)} = (-a)^{x} y_{0}-\frac{b}{1+a}(-a)^{x} +\frac{b}{1+a}
      2. 通解 yx=C(a)x+(a)xy0b1+a(a)x+b1+a=C(a)x+b1+ay_{x} = C(-a)^{x} + (-a)^{x} y_{0}-\frac{b}{1+a}(-a)^{x} +\frac{b}{1+a} = C(-a)^{x} + \frac{b}{1+a}
  • f(x)=(a0+a1x++anxn)μxf(x) = (a_{0} + a_{1}x + \cdots +a_{n}x^{n})\mu^{x} Yx=xk(A0+A1x++Anxn)μx \begin{split} & Y^*_{x} = x^{k}(A_{0} + A_{1}x+\cdots + A_{n}x^{n})\mu^{x} \end{split}
    • k={0aμ1a=μk = \begin{cases}0 & -a\ne \mu \\ 1 & -a=\mu\end{cases}
    • YxY_{x}^{*} 带入 yx+1+yx=f(x)y_{x+1} + y_{x} = f(x) 求出

results matching ""

    No results matching ""