Section03_其他知识点

凹凸性

定义

  1. 对于 y=f(x),(xD)y = f(x),(x\in \mathbb{D}),若  x1,x2D\forall\ x_{1}, x_{2} \in \mathbb{D}x1x2x_{1}\neq x_{2}f(x1+x22)<f(x1)+f(x2)2\displaystyle{f\bigg(\frac{x_{1}+x_{2}}{2}\bigg) < \frac{f(x_{1})+f(x_{2})}{2}}f(x)f(x)D\mathbb{D} 上为凹函数
  2. 对于 y=f(x),(xD)y = f(x),(x\in \mathbb{D}),若  x1,x2D\forall\ x_{1}, x_{2} \in \mathbb{D}x1x2x_{1}\neq x_{2}f(x1+x22)>f(x1)+f(x2)2\displaystyle{f\bigg(\frac{x_{1}+x_{2}}{2}\bigg) > \frac{f(x_{1})+f(x_{2})}{2}}f(x)f(x)D\mathbb{D} 上为凸函数

Notesx=x0x=x_{0} 两侧凹凸性不同,(x0,f(x0))(x_{0},f(x_{0})) 为拐点

判别法

  • Thf(x)C[a,b]f(x)\in C[a,b](a,b)(a,b)内二阶可导
    1. f(x)>0(a<x<b)f''(x)>0\quad (a<x<b)f(x)f(x)(a,b)(a,b) 上为凹函数
    2. f(x)<0(a<x<b)f''(x)<0\quad (a<x<b)f(x)f(x)(a,b)(a,b) 上为凸函数

例题

  • 例1 f(1)=0,f(1)=2f''(1) = 0, f'''(1)=2(1,f(1))(1,f(1))是否为拐点? f(1)=0,f(1)=2limx1f(x)f(1)x1=2>0 δ>0,0<x1<δ,f(x)f(1)x1>0{f(x)=f(x)f(1)<0,x(1δ,1)f(x)=f(x)f(1)>0,x(1,1+δ)(1,f(1))两侧的凹凸性不同,其为拐点 \begin{array}{ll} \because & f''(1) = 0, f'''(1) = 2 \\ \therefore & \displaystyle{\lim_{x\to 1}\frac{f(x)-f''(1)}{x-1} = 2 > 0} \\ \therefore & \exists\ \delta > 0, 0<\vert x- 1\vert <\delta, \frac{f''(x)-f''(1)}{x-1} > 0 \\ \therefore & \begin{cases} f''(x) = f''(x) - f''(1) < 0,\quad x\in(1-\delta, 1) \\ f''(x) = f''(x) - f''(1) > 0,\quad x\in(1, 1+\delta) \\ \end{cases} \\ \therefore & (1, f(1)) \text{两侧的凹凸性不同,其为拐点} \\ \end{array}

渐近线

定义

  1. 水平渐近线limxf(x)=A\displaystyle{\lim_{x\to \infty}f(x) = A},称 y=Ay=A 为水平渐近线。最多仅有两条,且与斜渐近线互斥
  2. 铅直渐近线{limxaf(x)=f(a0)=f(a+0)=\begin{cases}\displaystyle{\lim_{x\to a}f(x) = \infty}\\\displaystyle{f(a-0) = \infty}\\ \displaystyle{f(a+0) =\infty}\end{cases} 满足其一,则x=ax=a为铅直渐近线。铅直渐近线,仅可能存在于间断点处
  3. 斜渐近线limxf(x)x=a,(a0,)\displaystyle{\lim_{x\to \infty}\frac{f(x)}{x}=a,\quad(a\neq 0, \infty)}, limx[f(x)ax]=b\displaystyle{\lim_{x\to\infty}[f(x)-ax]=b},称 y=ax+by=ax+b 为斜渐近线

例题

  • 例1 y=x2+3x+2x1\displaystyle{y=\frac{x^{2}+3x+2}{x-1}},求渐近线 limxy=不存在在水平渐近线limx1y=x=1为铅直渐近线limxyx=limx2x2+3x+2x2x=2limx(y2x)=limx5x+2x1=5y=2x+5为斜渐近线 \begin{array}{ll} \because & \displaystyle{\lim_{x\to \infty}y = \infty} \\ \therefore & \text{不存在在水平渐近线} \\ \because & \displaystyle{\lim_{x\to 1}} y = \infty \\ \therefore & x = 1 \text{为铅直渐近线} \\ \because & \displaystyle{\lim_{x\to\infty}\frac{y}{x} = \lim_{x\to\infty}\frac{2x^{2}+3x+2}{x^{2}-x}=2} \\ & \displaystyle{\lim_{x\to \infty}(y-2x) = \lim_{x\to \infty}\frac{5x+2}{x-1} = 5}\\ \therefore & y=2x+5 \text{为斜渐近线} \\ \end{array}
  • 例2 y=x2x2x21e1x\displaystyle{y= \frac{x^{2}-x-2}{x^{2}-1}e^{\frac{1}{x}}} limxy=1y=1为水平渐近线limx1y=limx1(x+1)(x2)(x+1)(x1)e1x=32elimx1y=limx1(x+1)(x2)(x+1)(x1)e1x=+x=1为铅直渐近线limx0+y=+, limx0y=0x=0为铅直渐近线 \begin{array}{ll} \because & \displaystyle{\lim_{x\to \infty}y = 1} \\ \therefore & y=1\text{为水平渐近线} \\ \because & \displaystyle{\lim_{x\to -1}} y = \lim_{x\to -1}\frac{(x+1)(x-2)}{(x+1)(x-1)}e^{\frac{1}{x}} = \frac{3}{2e}\ne \infty \\ & \displaystyle{\lim_{x\to 1}} y = \lim_{x\to 1}\frac{(x+1)(x-2)}{(x+1)(x-1)}e^{\frac{1}{x}} = + \infty \\ \therefore & x = 1 \text{为铅直渐近线} \\ \because & \displaystyle{\lim_{x\to 0^{+}}y = +\infty,\ \lim_{x\to0^{-}}y=0} \\ \therefore & x= 0 \text{为铅直渐近线} \\ \end{array}
  • 例3 y=f(x)=x24x+7+xy=f(x) = \sqrt{x^{2}-4x+7}+x y=f(x)=4x+7x24x+7xlimx+y=,limxy=2y=2为水平渐近线f(x)不存在间断点不存在铅直渐近线limx+yx=2,limxyx=limx+(y2x)=2y=2x2为斜渐近线 \begin{array}{ll} & \displaystyle y=f(x) = \frac{-4x+7}{\sqrt{x^{2}-4x+7}-x} \\ \because & \displaystyle{\lim_{x\to +\infty}y = \infty, \lim_{x\to -\infty} y = 2} \\ \therefore & y=2 \text{为水平渐近线} \\ \because & f(x)\text{不存在间断点} \\ \therefore & \text{不存在铅直渐近线} \\ \because & \displaystyle{\lim_{x\to +\infty}\frac{y}{x} = 2, \lim_{x\to -\infty}\frac{y}{x}= -\infty} \\ & \displaystyle{\lim_{x\to +\infty}(y-2x) = -2} \\ \therefore & y=2x-2 \text{为斜渐近线} \\ \end{array}

    弧微分

  • L: y=f(x)\text{L: }y=f(x): ds=(dx)2+(dy)2=1+(dydx)2dxds = \sqrt{(dx)^{2}+(dy)^{2}} = \sqrt{1+(\frac{dy}{dx})^{2}}\cdot dxds=1+[f(x)]2dxds=\sqrt{1+[f'(x)]^{2}}\cdot dx

  • L: {x=ϕ(t)y=ψ(t)\text{L: }\begin{cases}x=\phi(t)\\y=\psi(t)\end{cases}: ds=(dx)2+(dy)2=(dxdt)2+(dydt)2dtds = \sqrt{(dx)^{2}+(dy)^{2}} = \sqrt{(\frac{dx}{dt})^{2}+(\frac{dy}{dt})^{2}}\cdot dtds=[ϕ(t)]2+[ψ(t)]2dtds = \sqrt{[\phi'(t)]^{2}+[\psi'(t)]^{2}}\cdot dt

results matching ""

    No results matching ""