Section01a_中值定理 (1)

Th1 Rolle中值定理

定理

  • {f(x)C[a,b],(a,b)内可导f(a)=f(b) ξ(a,b)\displaystyle{\begin{cases}f(x)\in C[a,b],\\(a,b)\text{内可导}\\ f(a)=f(b) \end{cases}\Rightarrow \exists\ \xi\in(a,b)},使得 f(ξ)=0 f'(\xi)=0

Proof fC[a,b] m,MWhen m=Mf(x)c0f(x)=0 ξ(a,b),f(ξ)=0When mMf(a)=f(b)m,M至少有一个存在于(a,b)ξ(a,b),f(ξ)=Mf(ξ)=0 or  f(ξ)fC[a,b]f(ξ)=0\begin{array}{ll} & f \in C[a,b] \Rightarrow \exists\ m,M \\ & \text{When } m=M \\ \because & f(x)\equiv c_{0} \\ \therefore & f'(x) = 0 \\ \therefore & \exists\ \xi \in (a,b), f'(\xi)=0 \\ & \text{When } m \ne M \\ \because & f(a) = f(b) \\ \therefore & m,M\text{至少有一个存在于}(a,b) \\ & \text{设}\xi\in(a,b), f(\xi) = M \\ \therefore & f'(\xi) = 0 \text{ or } \nexists\ f'(\xi) \\ \because & f\in C[a,b] \\ \therefore & f'(\xi) = 0 \end{array}

例题

  • 例1 f(x)C[0,2]f(x)\in C[0,2] 且在 (0,2)(0,2) 内可导且 f(0)=12,f(1)=0,f(2)=2f(0)=\frac{1}{2}, f(1)=0, f(2)=2 证明  ξ(0,2), f(ξ)=0\exists\ \xi\in(0,2),\ f'(\xi)=0
  • ϕ(x)=f(x)12ϕ(1)=12,ϕ(2)=32ϕ(1)ϕ(2)<0 c(1,2),ϕ(c)=0f(c)=12=f(0) ξ(0,c)(0,2), f(ξ)=0 \begin{array}{ll} & \text{令}\phi(x) = f(x)-\frac{1}{2} \\ \therefore & \phi(1) = -\frac{1}{2}, \phi(2) = \frac{3}{2} \\ \therefore & \phi(1)\phi(2) < 0 \\ \therefore & \exists\ c\in(1,2), \phi(c) = 0 \\ & \text{而}f(c) = \frac{1}{2} = f(0) \\ \therefore & \exists\ \xi\in(0,c)\subset(0,2),\ f'(\xi)= 0\\ \end{array}

Th2 Lagrange中值定理

定理

  • {fC[a,b](a,b)内可导 ξ(a,b)\displaystyle{\begin{cases}f\in C[a,b]\\(a,b)\text{内可导}\end{cases}}\Rightarrow \exists\ \xi\in(a,b) 使 f(ξ)=f(b)f(a)ba\displaystyle{f'(\xi) = \frac{f(b)-f(a)}{b-a}}

Proof A,B的两条曲线{L:y=f(x)LAB:yf(a)=f(b)f(a)ba(xa)ϕ(x)=LABL=f(a)+f(b)f(a)ba(xa)f(x)ϕ(a)=ϕ(b)=0 ξ(a,b), ϕ(ξ)=0ϕ(x)=f(b)f(a)baf(x)f(b)f(a)baf(ξ)=0f(ξ)=f(b)f(a)ba\begin{array}{ll} & \text{经}A,B\text{的两条曲线} \begin{cases} \text{L}: y=f(x) \\ \text{L}_{AB}: y-f(a) = \frac{f(b)-f(a)}{b-a}(x-a) \end{cases} \\ &\text{令}\phi(x) = \text{L}_{AB}-\text{L} = f(a)+\frac{f(b)-f(a)}{b-a}(x-a)-f(x) \\ \because & \phi(a) = \phi(b) = 0 \\ \therefore & \exists\ \xi\in(a,b),\ \phi'(\xi) = 0 \\ & \text{而}\phi'(x) = \frac{f(b)-f(a)}{b-a}-f'(x) \\ \therefore & \frac{f(b)-f(a)}{b-a}-f'(\xi) = 0 \\ & f'(\xi) = \frac{f(b)-f(a)}{b-a} \end{array}

Notes

  1. f(a)=f(b)Rolle中值定理f(a)=f(b) \Rightarrow \text{Rolle中值定理}
  2. f(ξ)=f(b)f(a)baf(b)f(a)=f(ξ)(ba)f(b)f(a)=f[a+(ba)θ](ba)θ(0,1) \begin{split} & f'(\xi)=\frac{f(b)-f(a)}{b-a}\\ \Leftrightarrow & f(b)-f(a)=f'(\xi)(b-a)\\ \Leftrightarrow & f(b)-f(a) = f'[a + (b-a)\theta](b-a) \quad \theta\in(0,1) \end{split}

Th3 Cauchy中值定理

定理

  • {f,gC[a,b]f,g(a,b)内可导g(x)0x(a,b)\begin{cases} f,g\in C[a,b] \\ f,g \text{在}(a,b)\text{内可导} \\ g'(x) \neq 0 & x\in(a,b)\end{cases} ξ(a,b)\exists\ \xi\in(a,b) 使得 f(ξ)g(ξ)=f(b)f(a)g(b)g(a) \frac{f'(\xi)}{g'(\xi)} = \frac{f(b)-f(a)}{g(b)-g(a)}

    Analysis

    1. g(x)0{g(ξ)0g(b)g(a)0g'(x)\neq 0 \Rightarrow \begin{cases}g'(\xi)\neq 0 \\ g(b)-g(a) \neq 0\end{cases}
    2. Lagrange: ϕ(x)=f(x)f(a)f(b)f(a)ba(xa)\phi(x) = f(x)-f(a)-\frac{f(b)-f(a)}{b-a}(x-a)

      Cauchy: ϕ(x)=f(x)f(a)f(b)f(a)g(b)g(a)[g(x)g(a)]\phi(x)= f(x) - f(a) - \frac{f(b)-f(a)}{g(b)-g(a)}[g(x)-g(a)]

    Proof ϕ(x)=f(x)f(a)f(b)f(a)g(b)g(a)[g(x)g(a)]ϕ(a)=ϕ(b) ξ(a,b),ϕ(ξ)=0ϕ(x)=f(x)f(b)f(a)g(b)g(a)g(x)g(x)0f(ξ)g(ξ)=f(b)f(a)g(b)g(a)\begin{array}{ll} & \text{令}\phi(x) = f(x)-f(a)-\frac{f(b)-f(a)}{g(b)-g(a)}[g(x)-g(a)]\\ \therefore & \phi(a)=\phi(b) \\ \therefore & \exists\ \xi\in(a,b), \phi'(\xi)=0 \\ & \text{而}\phi'(x) = f'(x)-\frac{f(b)-f(a)}{g(b)-g(a)}g'(x) \\ \because & g'(x) \neq 0 \\ \therefore & \frac{f'(\xi)}{g'(\xi)}=\frac{f(b)-f(a)}{g(b)-g(a)} \\ \end{array} Notes

    • g(x)=xg(x)=x,则CauchyLagrange\text{Cauchy}\Rightarrow\text{Lagrange}

results matching ""

    No results matching ""