Section02_特定函数的不定积分

R(x)dx\displaystyle{\int R(x)\cdot dx}

定义

  • R(x)=P(x)Q(x)R(x) = \frac{P(x)}{Q(x)},其中P(x)P(x)Q(x)Q(x)为多项式
    • degP<degQ\deg P < \deg QR(x)R(x)为真分式
    • degPdegQ\deg P\ge \deg QR(x)R(x)为假分式

原则

  1. 原则一R(x)R(x)为假分式,R(x)=多项式+真分式R(x) = \text{多项式}+\text{真分式},方法如下图所示: 若无法显示图片,请科学上网
  2. 原则二R(x)R(x) 为真分式{分子不动分母因式分解拆分为部分之和\begin{cases}\text{分子不动}\\\text{分母因式分解}\end{cases}\Rightarrow \text{拆分为部分之和},例
    1. 3x2(2x1)(x+1)=A2x1+Bx+1\displaystyle{\frac{3x-2}{(2x-1)(x+1)} = \frac{A}{2x-1} + \frac{B}{x+1}}
    2. x34x2+1(x2)(x+1)3=Ax2+Bx+1+C(x+1)2+D(x+1)3\displaystyle{\frac{x^{3}-4x^{2}+1}{(x-2)(x+1)^{3}} = \frac{A}{x-2}+\frac{B}{x+1}+\frac{C}{(x+1)^{2}} + \frac{D}{(x+1)^{3}}}
    3. x23x+1(2x+1)(x2+1)=A2x+1+Bx+Cx2+1\displaystyle{\frac{x^{2}-3x+1}{(2x+1)(x^{2}+1)} = \frac{A}{2x +1} + \frac{Bx+C}{x^{2}+1}}
    4. 3x21x2(x2+x+1)=Ax+Bx2+Cx+Dx2+x+1\displaystyle{\frac{3x^{2}-1}{x^{2}(x^{2}+x+1)} = \frac{A}{x}+\frac{B}{x^{2}}+\frac{Cx+D}{x^{2}+x+1}}

例题

  • 例1 1x2x12dx\displaystyle{\int \frac{1}{x^{2}-x-12}\cdot dx} 1x2x12dx=1(x+3)(x4)dx=17(1x41x+3)dx=17lnx4x+3+C \begin{align} & \int_{}^{}\frac{1}{x^{2}-x-12}\cdot dx = \int_{}^{}\frac{1}{(x+3)(x-4)}\cdot dx \\ & = \frac{1}{7}\int_{}^{}\bigg(\frac{1}{x-4}-\frac{1}{x+3}\bigg)\cdot dx \\ & = \frac{1}{7}\ln\left\vert \frac{x-4}{x+3}\right\vert +C \end{align}
  • 例2 dxx2+2x+2\displaystyle{\int \frac{dx}{x^{2}+2x+2}} 1x2+2x+2dx=1(x+1)2+1d(x+1)=arctan(x+1)+C \begin{align} & \int_{}^{}\frac{1}{x^{2}+2x+2}\cdot dx = \int_{}^{}\frac{1}{(x+1)^{2}+1} \cdot d(x+1) = \arctan (x+1) + C \end{align}
  • 例3 5x1x2x2dx\displaystyle{\frac{5x-1}{x^{2}-x-2}\cdot dx} 5x1x2x2dx=5x1(x2)(x+1)dx=(3x2+2x+1)dx=3lnx2+2lnx+1+C \begin{align} & \int_{}^{}\frac{5x-1}{x^{2}-x-2}\cdot dx = \int_{}^{}\frac{5x-1}{(x-2)(x+1)}\cdot dx \\ & = \int_{}^{}\bigg(\frac{3}{x-2}+\frac{2}{x+1}\bigg) \cdot dx \\ & = 3\ln\vert x-2\vert + 2\ln \vert x+1\vert +C \end{align}
  • 例4 x+2x2+x+1\displaystyle{\int \frac{x+2}{x^{2}+x+1}} x+2x2+x+1dx=12d(x2+x+1)x2+x+1+321(x+12)2+(32)2d(x+12)=12ln(x2+x+1)+3223arctan2x+13+C \begin{align} & \int_{}^{}\frac{x+2}{x^{2}+x+1}\cdot dx\\ & = \frac{1}{2}\int_{}^{}\frac{d(x^{2}+x+1)}{x^{2}+x+1} + \frac{3}{2}\int \frac{1}{(x+\frac{1}{2})^{2}+(\frac{\sqrt{3}}{2})^{2}} \cdot d(x+\frac{1}{2})\\ & = \frac{1}{2}\ln(x^{2} + x + 1) + \frac{3}{2}\cdot\frac{2}{\sqrt{3}}\arctan \frac{2x+1}{\sqrt{3}} + C\\ \end{align}
  • 例5 3x+2x(1+x2)dx\displaystyle{\int \frac{3x+2}{x(1+x^{2})}\cdot dx} 3x+2x(1+x2)dx=(2x+2x+31+x2)dx=2lnx+3arctanx2x1+x2dx=2lnx+3arctanxln(1+x2)+C \begin{align} & \int_{}^{}\frac{3x+2}{x(1+x^{2})}\cdot dx = \int_{}^{}\bigg(\frac{2}{x}+\frac{-2x+3}{1+x^{2}}\bigg)\cdot dx \\ & = 2\ln \vert x \vert + 3 \arctan x - \int_{}^{}\frac{2x}{1+x^{2}} \cdot dx \\ & = 2\ln \vert x \vert + 3 \arctan x - \ln(1+x^{2}) +C \end{align}
  • 例6 x3+3x2(1+x)dx\displaystyle{\int \frac{x^{3}+3}{x^{2}(1+x)}\cdot dx} x3+3x2(1+x)dx=x2(1+x)x2+3x2(1+x)dx=x+(3x+3x2+21+x)dx=x3lnx31x+2ln1+x+C \begin{align} & \int_{}^{}\frac{x^{3}+3}{x^{2}(1+x)}\cdot dx = \int_{}^{} \frac{x^{2}(1+x) - x^{2}+3}{x^{2}(1+x)}\cdot dx \\ & = x + \int_{}^{}\bigg(\frac{-3x+3}{x^{2}}+\frac{2}{1+x}\bigg)\cdot dx \\ & = x -3\ln \vert x \vert -3 \frac{1}{x} + 2\ln \vert 1+x \vert +C \\ \end{align}
  • 例7 dxx(x4+3)dx\displaystyle{\int \frac{dx}{x(x^{4}+3)}\cdot dx} dxx(x4+3)dx=x3x4(x4+3)dx=14dx4x4(x4+3)=112lnx4112ln(x4+3) \begin{align} & \int_{}^{} \frac{dx}{x(x^{4}+3)} \cdot dx = \int_{}^{}\frac{x^{3}}{x^{4}(x^{4}+3)}\cdot dx \\ & = \frac{1}{4}\int_{}^{}\frac{dx^{4}}{x^{4}(x^{4}+3)} = \frac{1}{12}\ln x^{4} - \frac{1}{12}\ln(x^{4}+3) \end{align}
  • 例8 x2+1x4+1dx\displaystyle{\int \frac{x^{2}+1}{x^{4}+1}\cdot dx} x2+1x4+1dx=1+1x2x2+1x2dx=d(x1x)(x1x)2+(2)2=12arctanx1x2+C \begin{align} & \int_{}^{} \frac{x^{2}+1}{x^{4}+1} \cdot dx = \int_{}^{} \frac{1+\frac{1}{x^{2}}}{x^{2}+\frac{1}{x^{2}}}\cdot dx = \int_{}^{}\frac{d(x-\frac{1}{x})}{(x-\frac{1}{x})^{2}+(\sqrt{2})^{2}}\\ & = \frac{1}{\sqrt{2}}\arctan \frac{x-\frac{1}{x}}{\sqrt{2}} + C \end{align}

无理函数的不定积分

Case 1 无需化为有理

  • 例1 dxx(1+x)\displaystyle{\int \frac{dx}{\sqrt{x}(1+x)}} 原式=2dx1+x=2arctanx+C \text{原式} = 2\int \frac{d\sqrt{x}}{1+x} = 2\arctan \sqrt{x} + C
  • 例2 dxxx2dx\displaystyle{\int \frac{dx}{\sqrt{x-x^{2}}}\cdot dx} 原式=2dx1x=2arcsinx+C \text{原式} = 2\int \frac{d\sqrt{x}}{\sqrt{1-x}} = 2\arcsin \sqrt{x} + C
  • 例3 1+x1xdx\displaystyle{\int \sqrt{\frac{1+x}{1-x}}\cdot dx} 原式=1+x1x2dx=arcsinx1221x2+C \text{原式} = \int \frac{1+x}{\sqrt{1-x^{2}}}\cdot dx = \arcsin x - \frac{1}{2}\cdot 2\sqrt{1-x^{2}} + C

Case 2 化为有理

  • 例1 exdx\displaystyle{\int e^{\sqrt{x}}\cdot dx} 原式=x=t22t×etdt=2tdet=2tet2etdt=2tet2et+C=2xex2ex+C \begin{align} & \text{原式}\xlongequal{x=t^{2}} \int 2t\times e^{t}\cdot dt = \int 2t \cdot de^{t} \\ & = 2t e^{t} - \int 2e^{t}\cdot dt = 2te^{t}-2e^{t} +C\\ & = 2\sqrt{x}e^{\sqrt{x}} - 2e^{\sqrt{x}} +C \end{align}
  • 例2 dx1+x\displaystyle{\int \frac{dx}{1+\sqrt{x}}} 原式=x=t22t1+tdt=(221+t)dt=2t2ln1+t+C=2x2ln(1+x)+C \begin{align} &\text{原式} \xlongequal{x=t^{2}} \int \frac{2t}{1+t}\cdot dt = \int \bigg(2 - \frac{2}{1+t}\bigg)\cdot dt \\ & = 2t -2\ln\vert 1+t\vert + C \\ & = 2\sqrt{x} -2\ln(1+\sqrt {x}) +C \end{align}

三角有理函数的不定积分

  • 例1 dx1+cosxdx\displaystyle{\int \frac{dx}{1+\cos x}\cdot dx} 原式= \text{原式} =

results matching ""

    No results matching ""