Section03_无穷小

定义

  1. limxaf(x)=0\lim_{x\to a} f(x)= 0,则称 f(x)f(x)xax\to a 时为无穷小
    1. 层次:设 α(x)0,β(x)0\alpha(x) \to 0, \beta(x) \to 0
      1. limβα=0\lim\frac{\beta}{\alpha}=0β\betaα\alpha高阶无穷小,记为 β=o(α)\beta = o(\alpha)
      2. limβα=k(k0,)\lim \frac{\beta}{\alpha}=k(k\neq 0, \infty)β\betaα\alpha同阶无穷小,记为 β=O(α)\beta = O(\alpha)
      3. limβα=1\lim \frac{\beta}{\alpha} = 1β\betaα\alpha等价无穷小,记为 αβ\alpha\sim\beta

性质

  1. 一般性质
    1. α0\alpha\to 0,β0\beta\to 0,则{α±β0αβ0kα0\begin{cases}\alpha\pm\beta\to 0\\\alpha\beta\to 0\\ k\alpha \to 0 \end{cases}
    2. αM,β0\vert\alpha\vert\le M,\beta\to 0,则 αβ0\alpha\beta\to 0 (单调有界函数同无穷小之积还是无穷小)
    3. limf(x)=Af(x)=A+α (α0)\lim f(x) = A\Leftrightarrow f(x) = A + \alpha\ (\alpha\to 0)
  2. 等价性质
    1. {αααββααβ,βγαγ\begin{cases} \alpha\sim\alpha \\ \alpha\sim\beta\Rightarrow\beta\sim\alpha \\ \alpha\sim\beta,\beta\sim\gamma\Rightarrow\alpha\sim\gamma \end{cases}
    2. αα1,ββ1 and limβ1α1=Alimβ2α2=A\alpha\sim\alpha_{1}, \beta\sim\beta_{1} \text{ and } \lim\frac{\beta_{1}}{\alpha_{1}}=A \Rightarrow \lim\frac{\beta_{2}}{\alpha_{2}} = A
  3. 常用等价无穷小 (When x0x\to 0)
    1. xsin(x)tan(x)arcsin(x)arctan(x)ln(1+x)ex1x\sim\sin(x)\sim\tan(x)\sim\arcsin(x)\sim\arctan(x)\sim\ln(1+x)\sim e^{x}-1
    2. 1cos(x)12x21-\cos(x)\sim\frac{1}{2}x^{2}
    3. (1+x)a1ax(1+x)^{a}-1\sim ax

重要极限

If x(0,π2)sin(x)<x<tan(x)\text{If } x\in(0,\frac{\pi}{2})\Rightarrow \sin(x)<x<\tan(x)

若图片无法打开请使用科学上网

  1. limΔ0sin(x)x=1\displaystyle{\lim_{\Delta\to 0}\frac{\sin(x)}{x}=1}
  2. limΔ0(1+Δ)1Δ=e\displaystyle{\lim_{\Delta\to 0}{(1+\Delta)^{\frac{1}{\Delta}}}=e}

型三:不定型

常见类型

  • 第一梯队 00,1\frac{0}{0},1^{\infty}
  • 第二梯队 ,0×,,0,00\frac{\infty}{\infty}, 0\times\infty,\infty-\infty,\infty^{0},0^{0}

00\frac{0}{0}

常见解法

  1. 三大习惯
    1. u(x)v(x)ev(x)lnu(x)u(x)^{v(x)}\Rightarrow e^{v(x)\ln u(x)}
    2. ln()ln(1+Δ)Δ (Δ0)\ln(\cdots)\Rightarrow\ln(1+\Delta)\sim\Delta\ (\Delta\to 0)
    3. ()1{eΔ1Δ(1+Δ)a1aΔ (Δ0)(\cdots)-1\Rightarrow\begin{cases}e^{\Delta}-1\sim\Delta\\(1+\Delta)^{a}-1\sim a\Delta\end{cases}\ (\Delta\to 0)
  2. 常识
    1. xln(1+x)12x2x-\ln(1+x)\sim \frac{1}{2}x^2
    2. x,sin(x),tan(x),arcsin(x),arctan(x)x, \sin(x), \tan(x), \arcsin(x),\arctan(x)中,任意两者差为三阶无穷小
  3. 误区
    1. limx0ex2+cos(x)2xsin(x)=limx0(ex21)+(cos(x)1)x2=x212x2x2=32\displaystyle{\lim_{x\to 0}\frac{e^{-x^{2}}+\cos(x)-2}{x\sin(x)}} = \lim_{x\to 0}\frac{(e^{-x^{2}}-1)+(\cos(x)-1)}{x^{2}}\color{#D0104C}{=}\frac{-x^{2}-\frac{1}{2}x^{2}}{x^{2}}=-\frac{3}{2}
    2. limx0xsin(x)x3limx0xxx3\displaystyle{\lim_{x\to 0}\frac{x-\sin(x)}{x^{3}}}\color{#D0104C}{\neq}\lim_{x\to 0}\frac{x-x}{x^{3}}

注意:加减用等价无穷小替换时,上下应该为精确度相同;而乘除不管

例题

  • 例1 limx0(1+2x)sin(x)1x2\displaystyle{\lim_{x\to 0}\frac{(1+2x)^{\sin(x)}-1}{x^{2}}}
    • limx0(1+2x)sinx1x2=limx0esinxln(1+2x)1x2=limx0sinxln(1+2x)x2=limx02x2x2=2 \begin{split} & \lim_{x\to 0}\frac{(1+2x)^{\sin x}-1}{x^{2}} \\ = & \lim_{x\to 0}\frac{e^{\sin x\ln(1+2x)}-1}{x^{2}}\\ = & \lim_{x\to 0}\frac{\sin x\ln(1+2x)}{x^{2}} \\ = & \lim_{x\to 0}\frac{2x^{2}}{x^{2}} \\ = & 2 \end{split}
  • 例2 limx0tanxsinxx3\displaystyle{\lim_{x\to 0}\frac{\tan x -\sin x}{x^{3}}}
    • limx0tanxsinxx3=limx0 tanxx1cosxx2=limx0 xx12x2x2=12 \begin{split} & \lim_{x\to 0}\frac{\tan x -\sin x}{x^{3}} \\ = & \lim_{x\to 0}\ \frac{\tan x}{x}\cdot\frac{1-\cos x}{x^{2}}\\ = & \lim_{x\to 0}\ \frac{x}{x}\cdot\frac{\frac{1}{2}x^2}{x^{2}}\\ = & \frac{1}{2} \end{split}
  • 例3 limx01+tanx1+xx3\displaystyle{\lim_{x\to 0}\frac{\sqrt{1+\tan x}-\sqrt{1+x}}{x^{3}}}
    • limx01+tanx1+xx3=limx011+tanx+1+xtanxxx3=12limx0sec2x13x2 according to the L’hopital’s Rule=16limx0tan2xx2=16limx0x2x2=16 \begin{split} & \lim_{x\to 0}\frac{\sqrt{1+\tan x}-\sqrt{1+x}}{x^{3}} \\ = & \lim_{x\to 0}\frac{1}{\sqrt{1+\tan x} + \sqrt{1+x}}\frac{\tan x -x}{x^{3}}\\ = & \frac{1}{2}\lim_{x\to 0}\frac{\sec^{2} x -1}{3x^{2}}\text{ according to the L'hopital's Rule} \\ = & \frac{1}{6}\lim_{x\to 0}\frac{\tan^{2} x}{x^{2}} \\ = & \frac{1}{6}\lim_{x\to 0}\frac{x^{2}}{x^{2}} =\frac{1}{6}\\ \end{split}
  • 例4 limx0earcsinxexx3\displaystyle{\lim_{x\to 0}\frac{e^{\arcsin x}-e^{x}}{x^{3}}}
    • limx0earcsinxexx3=limx0exearcsinx1xx3=limx0arcsinxxx3 according to the L’hopital’s Rule=limx011+x213x2=13limx01/2x2x2=16 \begin{split} & \lim_{x\to 0}\frac{e^{\arcsin x}-e^{x}}{x^{3}} \\ = & \lim_{x\to 0}e^{x}\frac{e^{\arcsin x-1}-x}{x^{3}} \\ = & \lim_{x\to 0}\frac{\arcsin x -x}{x^{3}}\text{ according to the L'hopital's Rule} \\ = & \lim_{x\to 0}\frac{\frac{1}{\sqrt{1+x^{2}}}-1}{3x^{2}} \\ = & \frac{1}{3}\lim_{x\to 0}\frac{1/2x^{2}}{x^{2}}=\frac{1}{6}\\ \end{split}
  • 例5 limx0lnxsinxx2\displaystyle{\lim_{x\to 0}\frac{\ln\frac{x}{\sin x}}{x^{2}}}
    • limx0lnxsinxx2=limx0ln(xsinxsinx+1)x2=limx0xsinxsinxx2=limx0xsinxx3 according to the L’hopital’s Rule=limx01cosx3x2=limx012x23x2=16 \begin{split} & \lim_{x\to 0}\frac{\ln\frac{x}{\sin x}}{x^{2}} \\ = & \lim_{x\to 0}\frac{\ln(\frac{x - \sin x}{\sin x}+1)}{x^{2}} \\ = & \lim_{x\to 0}\frac{\frac{x-\sin x}{\sin x}}{x^{2}} \\ = & \lim_{x\to 0}\frac{x-\sin x}{x^{3}} \text{ according to the L'hopital's Rule} \\ = & \lim_{x\to 0}\frac{1-\cos x}{3x^{2}} = \lim_{x\to 0}\frac{\frac{1}{2}x^{2}}{3x^{2}} = \frac{1}{6} \end{split}
  • 例6 limx0(1+cosx2)x1x3\displaystyle{\lim_{x\to 0}\frac{\big(\frac{1+\cos x}{2}\big)^{x}-1}{x^{3}}}
    • limx0(1+cosx2)x1x3=limx0exln(1+cosx2)1x3=limx0xln(1+cosx2)x3=limx0ln(cosx12+1)x2=limx0cosx12x2=limx012x22x2=14 \begin{split} & \lim_{x\to 0}\frac{\big(\frac{1+\cos x}{2}\big)^{x}-1}{x^{3}} \\ = & \lim_{x\to 0}\frac{e^{x\ln(\frac{1+\cos x}{2})}-1}{x^{3}} \\ = & \lim_{x\to 0}\frac{x\ln(\frac{1+\cos x}{2})}{x^{3}} \\ = & \lim_{x\to 0}\frac{\ln(\frac{\cos x-1}{2}+1)}{x^{2}} \\ = & \lim_{x\to 0}\frac{\cos x -1}{2x^{2}} \\ = & \lim_{x\to 0}\frac{-\frac{1}{2}x^{2}}{2x^{2}} = -\frac{1}{4} \\ \end{split}
  • 例7 limx0[sinxsin(sinx)]sinxx4\displaystyle{\lim_{x\to 0}\frac{[\sin x-\sin(\sin x)]\sin x}{x^{4}}}
    • limx0[sinxsin(sinx)]sinxx4=limx0[sinxsin(sinx)]sinxsin4x=limx0sinxsin(sinx)sin3xAssume sinx as tThe original equaltion=limt0tsintt3=limt01cost3t2=limt012x23t2=16 \begin{split} & \lim_{x\to 0}\frac{[\sin x-\sin(\sin x)]\sin x}{x^{4}} \\ = & \lim_{x\to 0}\frac{[\sin x-\sin(\sin x)]\sin x}{\sin^{4}x} \\ = & \lim_{x\to 0}\frac{\sin x-\sin(\sin x)}{\sin^{3}x} \\ & \text{Assume }\sin x \text{ as } t \\ & \text{The original equaltion} = \lim_{t\to 0}\frac{t-\sin t}{t^{3}} \\ = & \lim_{t\to 0}\frac{1-\cos t}{3t^{2}} \\ = & \lim_{t\to 0}\frac{\frac{1}{2}x^{2}}{3t^{2}} = \frac{1}{6} \end{split}
  • 例8 limx0x2cos2xsin2xx4\displaystyle{\lim_{x\to 0}\frac{x^2\cos^2 x-\sin^2 x}{x^4}}
    • limx0x2cos2xsin2xx4=limx0(xcosx+sinx)x(xcosxsinx)x3=limx0(xcosx+sinx)x(xcosxsinx)x3=limx0(cosx+sinxx)xcosxsinxx3=2limx0cosxxsinxcosx3x2=2limx0xsinx3x2=23 \begin{split} & \lim_{x\to 0}\frac{x^2\cos^2 x-\sin^2 x}{x^4} \\ = & \lim_{x\to 0}\frac{(x\cos x + \sin x)}{x}\cdot \frac{(x\cos x - \sin x)}{x^{3}} \\ = & \lim_{x\to 0}\frac{(x\cos x + \sin x)}{x}\cdot \frac{(x\cos x - \sin x)}{x^{3}} \\ = & \lim_{x\to 0}(\cos x + \frac{\sin x}{x})\cdot\frac{x\cos x - \sin x}{x^{3}} \\ = & 2\lim_{x\to 0}\frac{\cos x - x\sin x- \cos x}{3x^{2}} \\ = & 2\lim_{x\to 0}\frac{-x\sin x}{3x^{2}} = -\frac{2}{3} \end{split}

11^{\infty}

常见解法

  1. (1+Δ)1Δ (Δ0)(1+\Delta)^{\frac{1}{\Delta}}\ (\Delta \to 0)
  2. 恒等变形

例题

  • 例1 limx0(1xsinx)1xln(1+x)\displaystyle{\lim_{x\to 0}(1-x\sin x)^{\frac{1}{x-\ln(1+x)}}}
  • limx0(1xsinx)1xln(1+x)=limx0(1xsinx)1xln(1+x)=limx0{(1xsinx)1xsinx}xsinxxln(1+x)=elimx0xsinxxln(1+x)=e2 \begin{split} & \lim_{x\to 0}(1-x\sin x)^{\frac{1}{x-\ln(1+x)}} \\ = & \lim_{x\to 0}(1-x\sin x)^{\frac{1}{x-\ln(1+x)}} \\ = & \lim_{x\to 0}\{(1-x\sin x)^{-\frac{1}{x\sin x}}\}^{-\frac{x\sin x}{x-\ln(1+x)}} \\ = & e ^{-\lim_{x\to 0}\frac{x\sin x}{x-\ln(1+x)}} = e^{-2} \end{split}
  • 例2 limx(cos1x)x2\displaystyle{\lim_{x\to \infty}\bigg(\cos\frac{1}{x}\bigg)^{x^{2}}}
  • limx(cos1x)x2=limx{[1+(cos1x1)]1cos1x1}x2(cos1x1)=elimxcos1x11x2let t=1xThe Original equation=elimt0cost1t2=e12 \begin{split} & \lim_{x\to \infty}\bigg(\cos\frac{1}{x}\bigg)^{x^{2}} \\ = & \lim_{x\to \infty}\bigg\{\bigg[1+(\cos\frac{1}{x}-1)\bigg]^{\frac{1}{\cos\frac{1}{x}-1}}\bigg\}^{x^{2}(\cos\frac{1}{x}-1)} \\ = & e^{\lim_{x\to\infty}\frac{\cos\frac{1}{x}-1}{\frac{1}{x^{2}}}} \\ & \text{let } t = \frac{1}{x} \\ & \text{The Original equation}=e^{\lim_{t\to0}\frac{\cos t-1}{t^{2}}}= e^{-\frac{1}{2}} \end{split}
  • 例3 limx0(arcsinxx)1x2\displaystyle{\lim_{x\to 0}\bigg(\frac{\arcsin x}{x}\bigg)^{\frac{1}{x^{2}}}}
  • limx0(arcsinxx)1x2=limx0{[1+arcsinxxx]xarcsinxx}arcsinxxx3=elimx0arcsinxxx3=elimx0(1x2)1213x2=elimx012x23x2=e16 \begin{split} & \lim_{x\to 0}\bigg(\frac{\arcsin x}{x}\bigg)^{\frac{1}{x^{2}}} \\ = & \lim_{x\to 0}\bigg\{\bigg[1+\frac{\arcsin x - x}{x}\bigg]^{\frac{x}{\arcsin x - x}}\bigg\}^{\frac{\arcsin x - x}{x^{3}}} \\ = & e ^{\lim_{x\to 0}\frac{\arcsin x - x}{x^{3}}} = e^{\lim_{x\to 0}\frac{(1-x^{2})^{-\frac{1}{2}-1}}{3x^{2}}} \\ = & e^{\lim_{x\to 0}\frac{\frac{1}{2}x^{2}}{3x^{2}}} = e^{\frac{1}{6}} \end{split}
  • 例4 limx0(1+tanx1+sinx)1x3\displaystyle{\lim_{x\to 0}\bigg(\frac{1+\tan x}{1+\sin x}\bigg)^{\frac{1}{x^{3}}}}
  • limx0(1+tanx1+sinx)1x3=limx0{(1+tanxsinx1+sinx)1+sinxtanxsinx}tanxsinxx3(1+sinx)=elimx011+sinxtanxsinxx3=elimx0tanx(1cosx)x3=e12 \begin{split} & \lim_{x\to 0}\bigg(\frac{1+\tan x}{1+\sin x}\bigg)^{\frac{1}{x^{3}}} \\ = & \lim_{x\to 0}\bigg\{\bigg(1 + \frac{\tan x -\sin x}{1+\sin x}\bigg)^{\frac{1+\sin x}{\tan x- \sin x}}\bigg\}^{\frac{\tan x - \sin x}{x^{3}(1+\sin x)}} \\ = & e^{\lim_{x\to 0}\frac{1}{1+\sin x}\cdot \frac{\tan x-\sin x}{x^{3}}} \\ = & e^{\lim_{x\to 0}\frac{\tan x(1-\cos x)}{x^{3}}} = e^{\frac{1}{2}}\\ \end{split}

\frac{\infty}{\infty}

常见解法

  1. 洛必达法则
    1. limn+lnaxxb=0(a>0,b>0)\displaystyle{\lim_{n\to +\infty} \frac{\ln^{a}x}{x^{b}}=0\quad (a>0,b>0)}
    2. limn+xabx=0(a>0,b>1)\displaystyle{\lim_{n\to +\infty} \frac{x^{a}}{b^{x}}=0\quad (a>0,b>1)}
  2. limn+amxm+bnxn+={0m<n,m>n,ambnm=n.\displaystyle{\lim_{n\to +\infty} \frac{a_{m}x^{m}+\cdots}{b_{n}x^{n}+\cdots}=\begin{cases}0&m<n,\\\infty&m>n,\\\frac{a_{m}}{b_{n}}&m=n.\end{cases}}

例题

  • 例1 limxx8+3x+1(x+1)a(x1)a=b,b0\displaystyle{\lim_{x\to \infty}\frac{x^{8}+3x+1}{(x+1)^{a}-(x-1)^{a}}=b,\quad b\ne 0\ne\infty},求a,ba,b
  • (x+1)a=(a0)xa+(a1)xa1+(x1)a=(a0)xa(a1)xa1+(x+1)a(x1)a=2axa1+{a1=812a=b{a=9b=118 \begin{array}{ll} \because & (x+1)^{a} = {a\choose 0}x^{a} + {a\choose 1}x^{a-1} +\cdots \\ & (x-1)^{a}={a\choose 0}x^{a}-{a\choose 1}x^{a-1}+\cdots\\ \therefore & (x+1)^{a}-(x-1)^{a} = 2ax^{a-1}+\cdots \\ \therefore & \begin{cases} a-1 = 8 \\ \frac{1}{2a} = b\\ \end{cases}\\ \therefore & \begin{cases} a=9 \\ b=\frac{1}{18} \end{cases}\\ \end{array}
  • 例2 limx(2x2+3x+4x1axb)=0\displaystyle{\lim_{x\to \infty}\bigg(\frac{2x^{2}+3x+4}{x-1}-ax-b\bigg)=0},求a,ba,b
  • 2x2+3x+4x1axb=(2a)x2+(3+ab)x+4+bx1{2a=03+ab=0{a=2b=5 \begin{array}{ll} \because & \frac{2x^{2}+3x+4}{x-1}-ax-b = \frac{(2-a)x^{2}+(3+a-b)x+4+b}{x-1} \\ \therefore & \begin{cases} 2-a=0 \\ 3+a-b=0 \\ \end{cases} \\ \therefore & \begin{cases} a=2 \\ b=5 \end{cases} \\ \end{array}
  • 例3 limxln(3x2+x+4)ln(2x4x2+3)\displaystyle{\lim_{x\to \infty}\frac{\ln(3x^{2}+x+4)}{\ln(2x^{4}-x^{2}+3)}}
  • limxln(3x2+x+4)ln(2x4x2+3)=limx6x+13x2+x+48x32x2x4x2+3=limx12x5+24x5+=12 \begin{split} & \lim_{x\to \infty}\frac{\ln(3x^{2}+x+4)}{\ln(2x^{4}-x^{2}+3)} \\ = & \lim_{x\to \infty}\frac{\frac{6x+1}{3x^{2}+x+4}}{\frac{8x^{3}-2x}{2x^{4}-x^{2}+3}} \\ = & \lim_{x\to \infty} \frac{12x^{5}+\cdots}{24x^{5}+\cdots} = \frac{1}{2} \end{split}

\infty-\infty

常用解法

  1. 有分母 => 通分
  2. 无分母 => 尽量变为分母形式

例题

  • 例1 limx[xx2ln(1+1x)]\displaystyle{\lim_{x\to \infty}[x-x^{2}\ln(1+\frac{1}{x})]}
  • limx[xx2ln(1+1x)]=limxx2[1xln(1+1x2)]=limx1xln(1+1x2)1x2let t=1xThe original euqation=limt0tln(1+t)t2=limt012t2t2=12 \begin{split} & \lim_{x\to \infty}[x-x^{2}\ln(1+\frac{1}{x})] \\ = & \lim_{x\to \infty}x^{2}[\frac{1}{x}-\ln(1+\frac{1}{x^{2}})] \\ = & \lim_{x\to \infty}\frac{\frac{1}{x}-\ln(1+\frac{1}{x^{2}})}{\frac{1}{x^{2}}} \\ & \text{let }t = \frac{1}{x}\\ & \text{The original euqation} = \lim_{t\to 0}\frac{t-\ln{(1+t)}}{t^{2}} \\ = & \lim_{t\to 0}\frac{\frac{1}{2}t^{2}}{t^{2}} = \frac{1}{2} \end{split}
  • 例2 limx[(x+1)arctanxπ2x]\displaystyle{\lim_{x\to\infty}[(x+1)\arctan x-\frac{\pi}{2}x]}
  • limx[(x+1)arctanxπ2x]=limx[x(arctanxπ2)]+limxarctanx=limx[x(arctanxπ2)]+π2=limxarctanxπ21x+π2=limx11+x21x2+π2=π21 \begin{split} & \lim_{x\to\infty}[(x+1)\arctan x-\frac{\pi}{2}x] \\ = & \lim_{x\to\infty}[x(\arctan x-\frac{\pi}{2})] +\lim_{x\to\infty}\arctan x \\ = & \lim_{x\to\infty}[x(\arctan x-\frac{\pi}{2})] + \frac{\pi}{2}\\ = & \lim_{x\to\infty}\frac{\arctan x-\frac{\pi}{2}}{\frac{1}{x}} +\frac{\pi}{2} \\ = & \lim_{x\to\infty}\frac{\frac{1}{1+x^{2}}}{-\frac{1}{x^{2}}} +\frac{\pi}{2} \\ = & \frac{\pi}{2}-1 \end{split}
  • 例3 limx(x2+2x+3sinxx)\displaystyle{\lim_{x\to\infty}(\sqrt{x^{2}+2x+3\sin x}-x)}
  • limx(x2+2x+3sinxx)=limx2x+3sinxx2+2x+3sinx+x=limx2+3sinxx1+21x+3sinxx3+1=1 \begin{split} & \lim_{x\to\infty}(\sqrt{x^{2}+2x+3\sin x}-x) \\ = & \lim_{x\to\infty}\frac{2x+3\sin x}{\sqrt{x^{2}+2x+3\sin x}+x} \\ = & \lim_{x\to\infty}\frac{2+3\frac{\sin x}{x}}{\sqrt{1+2\frac{1}{x}+\frac{3\sin x}{x^{3}}}+1} = 1\\ \end{split}
  • 例4 limx0(1x21arctan2x)\displaystyle{\lim_{x\to 0}\bigg(\frac{1}{x^{2}}- \frac{1}{\arctan^{2} x}\bigg)}
  • limx0(1x21arctan2x)=limx0arctan2xx2x2arctan2x=limx0arctanx+xxarctanxxx3=2limx011+x213x2=23 \begin{split} & \lim_{x\to 0}\bigg(\frac{1}{x^{2}}- \frac{1}{\arctan^{2} x}\bigg) \\ = & \lim_{x\to 0}\frac{\arctan^{2} x-x^{2}}{x^{2}\arctan^{2}x} \\ = & \lim_{x\to 0}\frac{\arctan x+x}{x}\cdot\frac{\arctan x-x}{x^{3}} \\ = & 2\lim_{x\to 0}\frac{\frac{1}{1+x^{2}}-1}{3x^{2}} \\ = & -\frac{2}{3} \end{split}

0 and 0\infty^{0} \text { and }0^{\infty}

常见解法

  • 转化为eln()e^{ln(\cdots)}形式

例题

  • 例1 limx0+xsin2x\displaystyle{\lim_{x\to 0^{+}}x^{\sin 2x}}
    • limx0+xsin2x=limx0+esin2xln(x)=elimx0+sin2xln(x)=elimx0+2xln(x)=e2limx0+ln(x)1x=e2limx0+1/x1/x2=1 \begin{split} & \lim_{x\to 0^{+}}x^{\sin 2x} \\ = & \lim_{x\to 0^{+}}e^{\sin 2x\cdot\ln(x)} \\ = & e^{\lim_{x\to 0^{+}}\sin 2x\cdot\ln(x)} \\ = & e^{\lim_{x\to 0^{+}}2x\cdot\ln(x)} \\ = & e^{2\lim_{x\to 0^{+}}\frac{\ln(x)}{\frac{1}{x}}} \\ = & e^{2 \lim_{x\to 0^{+}}\frac{1/x}{-1/x^{2}}} \\ = & 1 \end{split}

0×0\times\infty

  • 转化为\frac{\infty}{\infty}00\frac{0}{0}

results matching ""

    No results matching ""