Section03_广义积分

正常积分

  1. 积分区间有限
  2. 被积函数在积分期间内连续或除有限个第一类间断点外处处连续

区间无穷的反常积分

f(x)C[a,+), a+f(x)dxf(x)\in C[a,+\infty),\ \int_{a}^{+\infty}f(x)\cdot dx

  1. 定义 abf(x)dx=F(b)F(a)\displaystyle\int_{a}^{b} f(x)\cdot dx = F(b)-F(a)
    • F(b)F(a)F(b)-F(a)a+f(x)dx\displaystyle \int_{a}^{+\infty}f(x)\cdot dx 不同
    • limb[F(b)F(a)]\displaystyle \lim_{b\to \infty} [F(b)-F(a)]af(x)dx\displaystyle \int_{a}^{\infty}f(x)\cdot dx 相同
      1. limb[F(b)F(a)]=A\displaystyle \lim_{b\to \infty} [F(b)-F(a)] = Aaf(x)dx=A\displaystyle \int_{a}^{\infty}f(x)\cdot dx=A
      2. limb[F(b)F(a)] \displaystyle \lim_{b\to \infty} [F(b)-F(a)]\ \nexistsaf(x)dx\displaystyle \int_{a}^{\infty}f(x)\cdot dx 发散
  2. 判别法
    1.  α>1;limx+xαf(x) \displaystyle \exists\ \alpha>1; \lim_{x\to +\infty}x^{\alpha}f(x)\ \exists,则收敛
    2.  α1;limx+xαf(x) =k(0)\displaystyle \exists\ \alpha\le 1; \lim_{x\to +\infty}x^{\alpha}f(x)\ = k(\neq 0)\text{或}\infty,则发散

例题

  • 例1 1+dx1+x2\displaystyle \int_{1}^{+\infty}\frac{dx}{1+x^{2}} 1bdx1+x2=arctanx1b=arctanbπ4limb+(arctanbπ4)=π41+dx1+x2=π4 \begin{array}{ll} &\displaystyle \int_{1}^{b}\frac{dx}{1+x^{2}} = \arctan x\vert^{b}_{1} = \arctan b - \frac{\pi}{4}\\ \therefore & \displaystyle \lim_{b\to +\infty}(\arctan b -\frac{\pi}{4}) = \frac{\pi}{4} \\ \therefore & \displaystyle \int_{1}^{+\infty}\frac{dx}{1+x^{2}} = \frac{\pi}{4} \\ \end{array}
  • 例2 判断 0+x1+x2dx\displaystyle \int_{0}^{+\infty}\frac{\sqrt{x}}{1+x^{2}}\cdot dx 的敛散性 limx+x32x1+x2=1,α=32>1原式收敛 \begin{array}{ll} \because & \displaystyle \lim_{x\to +\infty} x^{\frac{3}{2}}\frac{\sqrt{x}}{1+x^{2}} = 1, \alpha=\frac{3}{2}>1 \\ \therefore & \text{原式收敛} \\ \end{array}

Γ\Gamma 函数

Γ(α)=0+xα1exdx \Gamma(\alpha) = \int_{0}^{+\infty}x^{\alpha-1}e^{-x}\cdot dx

  1. Γ(α+1)=αΓ(α)\Gamma(\alpha+1)= \alpha\Gamma(\alpha)
  2. Γ(n+1)=n!nN\Gamma(n+1) = n!\quad n\in\mathbb{N}
  3. Γ(12)=π\Gamma(\frac{1}{2}) = \sqrt{\pi}

例题

  1. 0+x5exdx\displaystyle \int_{0}^{+\infty}x^{5}e^{-x}\cdot dx 0+x5exdx=Γ(6)=6! \begin{split} \int_{0}^{+\infty}x^{5}e^{-x}\cdot dx = \Gamma(6) = 6! \end{split}
  2. 0+xxexdx\displaystyle \int_{0}^{+\infty}x\sqrt{x}e^{-x}\cdot dx 0+xxexdx=0+x32exdx=Γ(52)=3212Γ(12)=3π4 \begin{split} &\int_{0}^{+\infty} x \sqrt{x}e^{-x}\cdot dx = \int_{0}^{+\infty} x^{\frac{3}{2}}e^{-x}\cdot dx\\ = & \Gamma(\frac{5}{2}) = \frac{3}{2}\cdot\frac{1}{2}\Gamma(\frac{1}{2}) = \frac{3 \sqrt{\pi}}{4} \\ \end{split}
  3. 0+x2ex2dx\displaystyle \int_{0}^{+\infty}x^{2}e^{-x^{2}}\cdot dx 0+x2ex2dx=x=t0+12t12etdt=12Γ(32)=π4 \begin{split} &\int_{0}^{+\infty}x^{2}e^{-x^{2}}\cdot dx \xlongequal{x = \sqrt{t}}\int_{0}^{+\infty} \frac{1}{2}t^{\frac{1}{2}}e^{-t}\cdot dt\\ =& \frac{1}{2}\Gamma(\frac{3}{2}) = \frac{\sqrt{\pi}}{4} \end{split}

f(x)C(,a], af(x)dxf(x)\in C(-\infty,a],\ \int_{-\infty}^{a}f(x)\cdot dx

  1. 定义 baf(x)dx=F(a)F(b)\displaystyle\int_{b}^{a} f(x)\cdot dx = F(a)-F(b)
    • F(a)F(b)F(a)-F(b)af(x)dx\displaystyle \int_{-\infty}^{a}f(x)\cdot dx 不同
    • limb[F(a)F(b)]\displaystyle \lim_{b\to -\infty} [F(a)-F(b)]af(x)dx\displaystyle \int_{-\infty}^{a}f(x)\cdot dx 相同
      1. limb[F(a)F(b)]=A\displaystyle \lim_{b\to -\infty} [F(a)-F(b)] = Aaf(x)dx=A\displaystyle \int_{-\infty}^{a}f(x)\cdot dx=A
      2. limb[F(a)F(b)] \displaystyle \lim_{b\to -\infty} [F(a)-F(b)]\ \nexistsaf(x)dx\displaystyle \int_{-\infty}^{a}f(x)\cdot dx 发散
  2. 判别法
    1.  α>1;limxxαf(x) \displaystyle \exists\ \alpha>1; \lim_{x\to -\infty}x^{\alpha}f(x)\ \exists,则收敛
    2.  α1;limxxαf(x) =k(0)\displaystyle \exists\ \alpha\le 1; \lim_{x\to -\infty}x^{\alpha}f(x)\ = k(\neq 0)\text{或}\infty,则发散

区间有限的反常积分

f(x)C(a,b]f(a+0)=abf(x)dxf(x)\in C(a,b]\text{且} f(a+0) = \infty\quad \int_{a}^{b}f(x)\cdot dx

  1. 定义  ϵ>0, a+ϵbf(x)dx\displaystyle\forall\ \epsilon >0,\ \int_{a+\epsilon}^{b} f(x)\cdot dx
    • F(b)F(a+ϵ)F(b)-F(a+\epsilon)a+ϵbf(x)dx\displaystyle \int_{a+\epsilon}^{b}f(x)\cdot dx 不同
    • limϵ0[F(b)F(a+ϵ)]\displaystyle \lim_{\epsilon\to 0}[F(b)-F(a+\epsilon)]a+ϵbf(x)dx\displaystyle \int_{a+\epsilon}^{b}f(x)\cdot dx 相同
      1. limϵ0[F(b)F(a+ϵ)]=A\displaystyle \lim_{\epsilon\to 0}[F(b)-F(a+\epsilon)]=Aa+ϵbf(x)dx=A\displaystyle \int_{a+\epsilon}^{b}f(x)\cdot dx=A
      2. limϵ0[F(b)F(a+ϵ)] \displaystyle \lim_{\epsilon\to 0}[F(b)-F(a+\epsilon)]\ \nexistsa+ϵbf(x)dx\displaystyle \int_{a+\epsilon}^{b}f(x)\cdot dx 发散
  2. 判别法
    1.  α<1,limxa+(xa)αf(x) \displaystyle\exists\ \alpha<1, \lim_{x\to a^{+}}(x-a)^{\alpha}f(x)\ \exists 收敛
    2.  α1,limxa+(xa)αf(x)=k(0)\displaystyle\exists\ \alpha\ge 1,\lim_{x\to a^{+}}(x-a)^{\alpha}f(x) = k(\neq 0)\text{或}\infty 发散

例题

  1. 12dxxx1\displaystyle \int_{1}^{2}\frac{dx}{x\sqrt{x-1}}  ϵ>01+ϵ2dxxx1=1+ϵ2d(x1)[1+(x1)]x1=ϵ1dx(1+x)x=2ϵ1d(x)1+(x)2=2arctanxϵ1=2(π4arctanϵ)limϵ0+arctanϵ=0原式=π2 \begin{array}{ll} &\displaystyle \forall\ \epsilon > 0 \int_{1+\epsilon}^{2}\frac{dx}{x\sqrt{x-1}} = \int_{1+\epsilon}^{2}\frac{d(x-1)}{[1+(x-1)]\sqrt{x-1}} \\ & \displaystyle = \int_{\epsilon}^{1} \frac{dx}{(1+x)\sqrt{x}} = 2\int_{\epsilon}^{1} \frac{d(\sqrt{x})}{1+(\sqrt{x})^{2}} = 2\arctan \sqrt{x}\vert_{\epsilon}^{1} \\ & \displaystyle= 2(\frac{\pi}{4} - \arctan \sqrt{\epsilon})\\ \because & \displaystyle \lim_{\epsilon\to 0^{+}}\arctan \sqrt{\epsilon} = 0 \\ \therefore & \text{原式} = \frac{\pi}{2} \\ \end{array}
  2. 12dx(x1)2\displaystyle \int_{1}^{2}\frac{dx}{(x-1)^{2}}  ϵ>01+ϵ2dx(x1)2=ϵ1dxx2=1xϵ1=1+1ϵlimϵ0+1ϵ=+原式发散 \begin{array}{ll} &\displaystyle \forall\ \epsilon > 0 \int_{1+\epsilon}^{2}\frac{dx}{(x-1)^{2}} = \int_{\epsilon}^{1}\frac{dx}{x^{2}} = \left.-\frac{1}{x}\right\vert_{\epsilon}^{1} \\ & \displaystyle = -1+\frac{1}{\epsilon} \\ \because & \displaystyle \lim_{\epsilon\to 0^{+}} \frac{1}{\epsilon}= +\infty \\ \therefore & \text{原式发散} \end{array}

  3. 讨论 01dxx2+x\displaystyle \int_{0}^{1}\frac{dx}{\sqrt{x^{2}+x}} 的敛散性 limx0+(x0)121xx+1=1 且 α=12<101dxx2+x收敛原式=01dxx(1+x)=201dx1+(x)2=201dx1+x2=x=tant20π4costd(tant)=20π4sectdt=(2lnsect+tant)0π4=2ln(2+1) \begin{array}{ll} \because & \displaystyle \lim_{x\to 0^{+}} (x-0)^{\frac{1}{2}}\frac{1}{\sqrt{x}\sqrt{x+1}} = 1 \text{ 且 } \alpha=\frac{1}{2}<1 \\ \therefore & \displaystyle \int_{0}^{1}\frac{dx}{\sqrt{x^{2}+x}} \text{收敛} \\ & \displaystyle \text{原式}=\int_{0}^{1}\frac{dx}{\sqrt{x(1+x)}} = 2 \int_{0}^{1}\frac{d \sqrt{x}}{\sqrt{1+(\sqrt{x})^{2}}} \\ & \displaystyle = 2 \int_{0}^{1} \frac{dx}{\sqrt{1+x^{2}}} \xlongequal{x = \tan t} 2 \int_{0}^{\frac{\pi}{4}} \cos t \cdot d(\tan t) = 2\int_{0}^{\frac{\pi}{4}}\sec t\cdot dt \\ & = (2\ln\vert \sec t +\tan t\vert )\vert _{0}^{\frac{\pi}{4}} = 2\ln(\sqrt{2} +1) \end{array}

f(x)C[a,b)f(b0)=abf(x)dxf(x)\in C[a,b)\text{且} f(b-0) = \infty\quad \int_{a}^{b}f(x)\cdot dx

  1. 定义  ϵ>0, abϵf(x)dx\displaystyle\forall\ \epsilon >0,\ \int_{a}^{b-\epsilon} f(x)\cdot dx
    • F(bϵ)F(a)F(b-\epsilon)-F(a)abϵf(x)dx\displaystyle \int_{a}^{b-\epsilon}f(x)\cdot dx 不同
    • limϵ0[F(bϵ)F(a)]\displaystyle \lim_{\epsilon\to 0}[F(b-\epsilon)-F(a)]abϵf(x)dx\displaystyle \int_{a}^{b-\epsilon}f(x)\cdot dx 相同
      1. limϵ0[F(bϵ)F(a)]=A\displaystyle \lim_{\epsilon\to 0}[F(b-\epsilon)-F(a)]=Aabϵf(x)dx=A\displaystyle \int_{a}^{b-\epsilon}f(x)\cdot dx=A
      2. limϵ0[F(bϵ)F(a)] \displaystyle \lim_{\epsilon\to 0}[F(b-\epsilon)-F(a)]\ \nexistsabϵf(x)dx\displaystyle \int_{a}^{b-\epsilon}f(x)\cdot dx 发散
  2. 判别法
    1.  α<1,limxb(bx)αf(x) \displaystyle\exists\ \alpha<1, \lim_{x\to b^{-}}(b-x)^{\alpha}f(x)\ \exists 收敛
    2.  α1,limxb(bx)αf(x)=k(0)\displaystyle\exists\ \alpha\ge 1,\lim_{x\to b^{-}}(b-x)^{\alpha}f(x) = k(\neq 0)\text{或}\infty 发散

例题

  1. 01ln(1x)dx\displaystyle \int_{0}^{1}\ln(1-x)\cdot dx  ϵ>001ϵln(1x)dx=xln(1x)01ϵ+01ϵx1xdx=xln(1x)01ϵ01ϵ1dx+01ϵ11xdx=xln(1x)01ϵx01ϵln(1x)01ϵ=(x1)ln(1x)01ϵx01ϵlimϵ0+(1ϵ1)ln(11+ϵ)=limϵ0+lnϵ1ϵ=limϵ0+1ϵ1ϵ2=limϵ0+ϵ=0原式=01=1 \begin{array}{ll} &\forall\ \epsilon > 0 \\ & \displaystyle\int_{0}^{1-\epsilon} \ln (1-x)\cdot dx = x\ln(1-x)\vert^{1-\epsilon}_{0} + \int_{0}^{1-\epsilon}\frac{x}{1-x}\cdot dx\\ & \displaystyle = x\ln(1-x)\vert^{1-\epsilon}_{0} - \int_{0}^{1-\epsilon}1\cdot dx + \int_{0}^{1-\epsilon}\frac{1}{1-x}\cdot dx \\ & = x\ln(1-x)\vert_{0}^{1-\epsilon} - x\vert_{0}^{1-\epsilon} -\ln(1-x)\vert _{0}^{1-\epsilon} \\ & = (x-1)\ln(1-x)\vert^{1-\epsilon}_{0}- x\vert_{0}^{1-\epsilon} \\ \because & \displaystyle \lim_{\epsilon\to 0^{+}}(1-\epsilon - 1)\ln(1-1+\epsilon) = -\lim_{\epsilon\to 0^{+}}\frac{\ln \epsilon}{\frac{1}{\epsilon}} \\ & = \displaystyle \lim_{\epsilon\to0^{+}}\frac{\frac{1}{\epsilon}}{\frac{1}{\epsilon^{2}}} = \lim_{\epsilon\to 0^{+}}\epsilon = 0 \\ \therefore & \text{原式} = 0 -1 = -1 \\ \end{array}
  2. 01dx1x2\displaystyle \int_{0}^{1}\frac{dx}{\sqrt{1-x^{2}}} limx1(1x)121(1x)(1+x)=12 且 α=12<101dx1x2收敛01dx1x2=arcsinx01=π2 \begin{array}{ll} \because & \displaystyle \lim_{x\to 1^{-}} (1-x)^{\frac{1}{2}}\frac{1}{\sqrt{(1-x)(1+x)}} = \frac{1}{\sqrt{2}} \text{ 且 } \alpha=\frac{1}{2}<1\\ \therefore & \displaystyle \int_{0}^{1}\frac{dx}{\sqrt{1-x^{2}}} \text{收敛} \\ \therefore & \displaystyle \int_{0}^{1}\frac{dx}{\sqrt{1-x^{2}}} = \arcsin x\vert^{1}_{0} = \frac{\pi}{2} \\ \end{array}

results matching ""

    No results matching ""