Section01_定义与性质

积分号
线性 \displaystyle \int abf(x)dx\displaystyle \int_{a}^{b}f(x)\cdot dx
面状 \displaystyle \iint Df(x,y)dσ\displaystyle \iint\limits_{\mathbb{D}}f(x,y)\cdot d\sigma

背景

  1. 已知密度函数 ρ(x,y)\rho(x,y) 求钢板的质量
    1. D\mathbb{D} 划分为 Δσ1,Δσ2,,Δσn\Delta \sigma_{1},\Delta \sigma_{2},\cdots,\Delta\sigma_{n}
    2.  (ζi,ηi)Δσi(i=1,2,,n)\forall\ (\zeta_{i},\eta_{i})\in \Delta\sigma_{i}\quad (i = 1,2,\cdots, n)
      1. Δmρ(ζi,ηi)Δσi\Delta m\approx \rho(\zeta_{i},\eta_{i})\Delta \sigma_{i}
      2. mi=1nρ(ζi,ηi)Δσim \approx \sum_{i=1}^{n}\rho(\zeta_{i},\eta_{i})\Delta \sigma_{i}
    3. λ\lambdaΔσ1,Δσ2,,Δσn\Delta \sigma_{1},\Delta \sigma_{2},\cdots,\Delta\sigma_{n} 直径的最大者
      • m=limλ0i=1nρ(ζi,ηi)Δσim = \lim\limits_{\lambda\to 0}\sum_{i=1}^{n}\rho(\zeta_{i},\eta_{i})\Delta \sigma_{i}
  2. Σ: z=f(x,y)0,(x,y)D\Sigma:\ z=f(x,y)\ge 0, (x,y)\in\mathbb{D} 求体积 VV
    1. D\mathbb{D} 划分为 Δσ1,Δσ2,,Δσn\Delta \sigma_{1},\Delta \sigma_{2},\cdots,\Delta\sigma_{n}
    2.  (ζi,ηi)Δσi(i=1,2,,n)\forall\ (\zeta_{i},\eta_{i})\in \Delta\sigma_{i}\quad (i = 1,2,\cdots, n)
      1. ΔVf(ζi,ηi)Δσi\Delta V\approx f(\zeta_{i},\eta_{i})\Delta \sigma_{i}
      2. Vi=1nf(ζi,ηi)ΔσiV \approx \sum_{i=1}^{n}f(\zeta_{i},\eta_{i})\Delta \sigma_{i}
    3. λ\lambdaΔσ1,Δσ2,,Δσn\Delta \sigma_{1},\Delta \sigma_{2},\cdots,\Delta\sigma_{n} 直径的最大者
      • V=limλ0i=1nf(ζi,ηi)ΔσiV = \lim\limits_{\lambda\to 0}\sum_{i=1}^{n}f(\zeta_{i},\eta_{i})\Delta \sigma_{i}

定义

  • D\mathbb{D}xoyxoy 平面上的有界闭区域,f(x,y)f(x,y)D\mathbb{D} 上有界
    1. D\mathbb{D} 划分为 Δσ1,Δσ2,,Δσn\Delta \sigma_{1},\Delta \sigma_{2},\cdots,\Delta\sigma_{n}
    2.  (ζi,ηi)Δσi(i=1,2,,n)\forall\ (\zeta_{i},\eta_{i})\in \Delta\sigma_{i}\quad (i = 1,2,\cdots, n)i=1nf(ζi,ηi)Δσi\sum_{i=1}^{n}f(\zeta_{i},\eta_{i})\Delta \sigma_{i}
    3. λ\lambdaΔσ1,Δσ2,,Δσn\Delta \sigma_{1},\Delta \sigma_{2},\cdots,\Delta\sigma_{n} 直径的最大者
  • limλ0i=1nf(ζi,ηi)Δσi \lim\limits_{\lambda\to 0}\sum_{i=1}^{n} f(\zeta_{i},\eta_{i})\Delta \sigma_{i}\ \exists,则称此极限为 f(x,y)f(x,y)D\mathbb{D} 上的二重积分,记为 Df(x,y)dσ\displaystyle \iint\limits_{\mathbb{D}}f(x,y)\cdot d\sigma,即 Df(x,y)dσlimλ0i=1nf(ζi,ηi)Δσi \iint\limits_{\mathbb{D}} f(x,y)\cdot d\sigma \triangleq \lim_{\lambda\to 0}\sum_{i=1}^{n}f(\zeta_{i},\eta_{i})\cdot \Delta \sigma_{i}

性质

  1. D[f(x,y)±g(x,y)]dσ=Df(x,y)dσ±Dg(x,y)dσ\displaystyle \iint\limits_{\mathbb{D}}[f(x,y)\pm g(x,y)]\cdot d\sigma = \iint\limits_{\mathbb{D}}f(x,y)\cdot d\sigma\pm\iint\limits_{\mathbb{D}}g(x,y)\cdot d\sigma
  2. Dkf(x,y)dσ=kDf(x,y)dσ\displaystyle \iint\limits_{\mathbb{D}}kf(x,y)\cdot d\sigma = k\iint\limits_{\mathbb{D}}f(x,y)\cdot d\sigma
  3. Df(x,y)dσ=D1f(x,y)dσ+D2f(x,y)dσ(D=D1+D2)\displaystyle \iint\limits_{\mathbb{D}}f(x,y)\cdot d\sigma = \iint\limits_{\mathbb{D}_{1}}f(x,y)\cdot d\sigma+\iint\limits_{\mathbb{D}_{2}}f(x,y)\cdot d\sigma\quad (\mathbb{D} = \mathbb{D}_{1}+\mathbb{D}_{2})
  4. D1dσ=AAD的面积\displaystyle \iint\limits_{D} 1\cdot d\sigma = A\quad A\text{为}\mathbb{D}\text{的面积}
  5. 重点 积分中值定理:D\mathbb{D} 为有界闭区间,f(x,y)f(x,y)D\mathbb{D} 上连续,则  (ζ,η)D\exists\ (\zeta,\eta)\in\mathbb{D},使 Df(z,y)dσ=Af(ζ,η) \iint\limits_{\mathbb{D}} f(z,y)\cdot d\sigma = Af(\zeta,\eta)
    • D: x2+4y2t2(t2>0)\mathbb{D}:\ x^{2} + 4y^{2} \le t^{2}\quad (t^{2}> 0),求 limt0Dex2cos2ydσt2\displaystyle \lim_{t\to 0}\frac{\iint\limits_{\mathbb{D}}e^{x^{2}}\cos 2y\cdot d\sigma}{t^{2}} x2+4y2=t2x2t2+y2(t2)2=1 (ζ,η)D, Dex2cos2ydσ=t22πeζ2cos2η原式=limt0t22eζ2cos2ηt2=12limt0eζ2cos2ηlimt0D=(0,0)12limt0eζ2cos2η=12 \begin{array}{ll} & \displaystyle x^{2}+4y^{2} = t^{2} \Rightarrow \frac{x^{2}}{t^{2}} + \frac{y^{2}}{(\frac{t}{2})^{2}} = 1 \\ \because & \displaystyle \exists\ (\zeta,\eta)\in \mathbb{D},\ \iint\limits_{\mathbb{D}}e^{x^{2}} \cos 2y\cdot d\sigma = \frac{t^{2}}{2}\pi \cdot e^{\zeta^{2}}\cos 2\eta \\ \therefore & \displaystyle \text{原式} = \lim_{t\to 0} \frac{\frac{t^{2}}{2}\cdot e^{\zeta^{2}}\cos 2\eta}{t^{2}} = \frac{1}{2}\lim_{t\to 0}e^{\zeta^{2}}\cos 2\eta \\ \because & \displaystyle \lim_{t\to 0} \mathbb{D} = (0,0) \\ \therefore & \displaystyle \frac{1}{2}\lim_{t\to 0}e^{\zeta^{2}}\cos 2\eta = \frac{1}{2} \\ \end{array}
  6. 对称性
    1. D\mathbb{D} 关于左右对称(关于 yy 轴或关于 xx 对称),若右侧为 D1\mathbb{D}_{1} Df(x,y)dσ=2D1f(x,y)dσ \iint\limits_{\mathbb{D}}f(x,y)\cdot d\sigma = 2\iint\limits_{\mathbb{D}_{1}} f(x,y)\cdot d\sigma
    2. D\mathbb{D} 关于 y=xy=x 对称 Df(x,y)dσ=Df(y,x)dσ\iint\limits_{\mathbb{D}}f(x,y)\cdot d\sigma = \iint\limits_{\mathbb{D}} f(y,x)\cdot d\sigma
      • D\mathbb{D} 如下图所示,求 I=Dx3x3+y3dσ\displaystyle I = \iint\limits_{\mathbb{D}}\frac{x^{3}}{x^{3}+y^{3}}\cdot d\sigma D关于y=x对称I=Dx3x3+y3dσ=Dy3y3+x3dσ2I=D1dσ=A=212=32 \begin{array}{ll} \because & \mathbb{D} \text{关于} y=x \text{对称} \\ \therefore & \displaystyle I = \iint\limits_{\mathbb{D}} \frac{x^{3}}{x^{3}+y^{3}} \cdot d\sigma = \iint\limits_{\mathbb{D}} \frac{y^{3}}{y^{3}+x^{3}} \cdot d\sigma \\ \therefore & \displaystyle 2I = \iint\limits_{\mathbb{D}}1\cdot d\sigma = A = 2 - \frac{1}{2} = \frac{3}{2} \\ \end{array}

results matching ""

    No results matching ""