Section04_连续与间断

  1. 连续
    1. f(x)f(x)x=ax=a处连续:若limxaf(x)=f(a)f(a0)=f(a+0)=f(a)\displaystyle{\lim_{x\to a}f(x)=f(a)\Leftrightarrow f(a-0)=f(a+0)=f(a)},则称f(x)f(x)x=ax=a处连续
    2. f(x)f(x)[a,b][a,b]上连续:若{f(x)(a,b)内处处连续f(a)=f(a+0), f(b)=f(b0)\displaystyle{\begin{cases}f(x)\text{在}(a,b)\text{内处处连续}\\f(a)=f(a+0),\ f(b)=f(b-0)\end{cases}},则称f(x)f(x)[a,b][a,b]上连续,记为f(x)C[a,b]f(x)\in \text{C}[a,b]
  2. 间断:若limxaf(x)f(a)\displaystyle{\lim_{x\to a}f(x)\neq f(a)},称x=ax=af(x)f(x)的间断点
    1. 第一类间断点  f(a0),f(a+0)\exists\ f(a-0),f(a+0)
      1. f(a0)=f(a+0)f(a)f(a-0)=f(a+0)\neq f(a),则aa可去间断点
      2. f(a0)f(a+0)f(a-0)\neq f(a+0),则aa跳跃间断点
    2. 第二类间断点 f(a0),f(a+0)f(a-0),f(a+0)二者中至少一个不存在 (±\pm\infty 也为不存在)

型四:间断点及其分类

  • 例1 f(x)=lnxx21e1x2\displaystyle{f(x)=\frac{\ln\vert x\vert}{x^{2}-1}e^{\frac{1}{x-2}}} 的间断点及其类型

    • x=1,0,1,2为间断点limx1f(x)=limx1e1x2(x1)ln(x)(x+1)=e132limx1ln(x)(x+1)=e132limx1ln[1(x+1)](x+1)=e132  x=1为可去间断点limx1f(x)=limx1e1x2(x+1)ln(x)(x1)=e12limx1ln[1+(x1)](x1)=12ex=1为可去间断点limx0f(x)=limx0e1x2x21ln(x)=+x=2为第二类间断点limx2f(x)=0 and limx2+=+x=2为第二类间断点 \begin{split} & x=-1,0,1,2\text{为间断点}\\ & \lim_{x\to -1}f(x) = \lim_{x\to -1}\frac{e^{\frac{1}{x-2}}}{( x-1 )}\frac{\ln (-x)}{(x+1)} \\ = & -\frac{e^{-\frac{1}{3}}}{2}\lim_{x\to -1}\frac{\ln (-x)}{(x+1)} \\ = & -\frac{e^{-\frac{1}{3}}}{2}\lim_{x\to -1}\frac{\ln [1-(x+1)]}{(x+1)} \\ = & \frac{e^{\frac{1}{3}}}{2}\ \\ & \Rightarrow\ x=-1\text{为可去间断点} \\\\ & \lim_{x\to 1}f(x) = \lim_{x\to 1}\frac{e^{\frac{1}{x-2}}}{( x+1 )}\frac{\ln (x)}{(x-1)} \\ = & \frac{e^{-1}}{2}\lim_{x\to 1}\frac{\ln [1+(x-1)]}{(x-1)} \\ = & \frac{1}{2e} \\ & \Rightarrow x=1 \text{为可去间断点} \\\\ & \lim_{x\to 0}f(x) = \lim_{x\to 0}\frac{e^{\frac{1}{x-2}}}{x^{2}-1}\ln(x) = +\infty \\ & \Rightarrow x=2\text{为第二类间断点} \\\\ & \lim_{x\to 2^{-}}f(x) = 0 \text{ and } \lim_{x\to 2^{+}} = +\infty \\ & \Rightarrow x=2\text{为第二类间断点} \end{split}
  • 例2 f(x)=1e1x11+e1x1\displaystyle{f(x)=\frac{1-e^{\frac{1}{x-1}}}{1+e^{\frac{1}{x-1}}}}

    • x=1为间断点limx1+f(x)=limx1+1e1/(x1)11e1/(x1)+1=1limx1f(x)=limx1101+0=1 x=1为跳跃间断点 \begin{split} & x=1\text{为间断点}\\ & \lim_{x\to 1^{+}}f(x) = \lim_{x\to 1^{+}}\frac{\frac{1}{e^{1/(x-1)}}-1}{\frac{1}{e^{1/(x-1)}}+1} = -1 \\ & \lim_{x\to 1^{-}}f(x)=\lim_{x\to 1^{-}}\frac{1-0}{1+0}=1\\ &\Rightarrow\ x=1\text{为跳跃间断点} \end{split}

闭区间上连续函数(f(x)C[a,b])(f(x)\in C[a,b])的性质

  1. 最值:设f(x)C[a,b] m,M;f(x)[m,M]f(x)\in C[a,b]\Rightarrow \exists\ m,M;f(x)\in [m,M]
  2. 有界:设f(x)C[a,b] k>0,f(x)<kf(x)\in C[a,b]\Rightarrow \exists\ k>0, \vert f(x)\vert < k
  3. 零点定理:设f(x)C[a,b],f(a)f(b)<0 c[a,b],f(c)=0f(x)\in C[a,b], f(a)f(b)<0\Rightarrow\exists\ c\in[a,b],f(c)=0
  4. 介值定理: n[m,M], ζ[a,b],f(ζ)=n\forall\ n\in[m,M],\exists\ \zeta\in[a,b],f(\zeta)=n

相关题型

  • 出题特点
    • 纯函数值之和
    •  ζ[a,b]\exists\ \zeta\in[a,b]
  • 例1 f(x)C[0,2],f(0)+2f(1)+3f(2)=12f(x)\in C[0,2], f(0)+2f(1)+3f(2)=12,证明: c[0,2]\exists\ c\in[0,2] 使得 f(c)=2f(c) = 2
    • f(x)C[0,2] and 6mf(0)+2f(1)+3f(2)6Mm2M c[0,2],f(c)=2 \begin{array}{ll} \because & f(x)\in C[0,2] \text{ and } 6m\le f(0)+2f(1)+3f(2)\le 6M \\ \therefore & m\le 2 \le M \\ \therefore & \exists\ c\in[0,2], f(c)=2 \\ \end{array}
  • 例2 f(x)C[a,b],p>0,q>0f(x)\in C[a,b],p>0,q>0,证明: ζ[a,b]\exists\ \zeta\in[a,b]使得pf(a)+qf(b)=(p+q)f(ζ)pf(a)+qf(b)=(p+q)f(\zeta)
    • f(x)C[a,b] and (p+q)mpf(a)+qf(b)(p+q)Mmpf(a)+qf(b)p+qM ζ[a,b],f(ζ)=pf(a)+qf(b)p+q ζ,(p+q)f(ζ)=f(a)+qf(b) \begin{array}{ll} \because & f(x) \in C[a,b] \text{ and } (p+q)m\le pf(a)+qf(b)\le (p+q)M \\ \therefore & m\le \frac{pf(a)+qf(b)}{p+q}\le M \\ \therefore & \exists\ \zeta\in[a,b], f(\zeta) = \frac{pf(a)+qf(b)}{p+q} \\ \therefore & \exists\ \zeta, (p+q)f(\zeta) = f(a)+qf(b) \\ \end{array}

results matching ""

    No results matching ""