Section03_可降阶的高阶微分方程(不要求)

y(n)=f(x)y^{(n)} = f(x)

f(x,y,y)=0f(x,y',y'') = 0yy

解法

  1. p=yp = y'
  2. f(x,p,dpdx)=0f(x, p, \frac{dp}{dx}) = 0
  3. p=ϕ(x,C1)p = \phi(x,C_{1})
  4. y=ϕ(x,C1)dx+C2y = \int \phi(x,C_{1})\cdot dx + C_{2}

例题

  1. xy+2y=x2\displaystyle xy''+2y'=x^{2} p=yxdpdx+2p=x2dpdx+2xp=xp=[xe2xdxdx+C1]e2xdxp=[14x4+C1]x2=14x2+C1x2y=(14x2+C1x2)dx+C2y=112x3C1x1+C2 \begin{array}{ll} & \text{令} p = y' \\ \therefore & x \frac{dp}{dx} + 2p = x^{2}\\ & \frac{dp}{dx} + \frac{2}{x}p = x \\ \therefore & p = [\int_{}^{}xe^{\int_{}^{}\frac{2}{x}\cdot dx}\cdot dx + C_{1}]e^{-\int_{}^{}\frac{2}{x}\cdot dx} \\ & p = [\frac{1}{4} x^{4} + C_{1}] x^{-2} = \frac{1}{4}x^{2} + C_{1} x^{-2} \\ \therefore & y = \int_{}^{} (\frac{1}{4}x^{2} + C_{1} x^{-2})\cdot dx + C_{2} \\ & y = \frac{1}{12}x^{3} - C_{1}x^{-1} + C_{2} \\ \end{array}

f(y,y,y)=0f(y,y',y'')=0xx

解法

  1. y=py'=p
  2. y=dpdx=dydxdpdy=pdpdyy'' = \frac{dp}{dx} = \frac{dy}{dx}\frac{dp}{dy} = p\frac{dp}{dy}
  3. f(y,p,pdpdy)f(y,p,p\frac{dp}{dy})
  4. dydx=p=ϕ(y,C1)\frac{dy}{dx} = p = \phi(y,C_{1})
  5. dyϕ(y,C1)=dx+C2\displaystyle\int \frac{dy}{\phi(y,C_{1})} =\int dx + C_{2}

例题

  1. yy(y)2=0,y(0)=y(0)=1\displaystyle yy''-(y')^{2} = 0, y(0)=y'(0)=1 求特解 p=ypydpdyp2=0y(0)=y(0)=1=pdpdypy=0p=C1e1ydyp=C1elny=C1ydydx=C1ydyy=C1dxdyy=C1dx+C2lny=C1x+C2y=C2eC1xy(0)=y(0)=1C2=1;C1C2=1y=ex \begin{array}{ll} & \text{令} p = y' \\ \therefore & py \frac{dp}{dy} - p^{2} = 0 \\ \because & y(0)=y'(0) = 1 = p \\ \therefore & \frac{dp}{dy} - \frac{p}{y} = 0 \\ \therefore & p = C_{1}e^{- \int_{}^{}- \frac{1}{y}\cdot dy} \\ & p = C_{1}e^{\ln y} = C_{1} y \\ \therefore & \frac{dy}{dx} = C_{1}y \\ & \frac{dy}{y} = C_{1}dx \\ \therefore & \int_{}^{}\frac{dy}{y} = \int_{}^{}C_{1}dx + C_{2}\\ \therefore & \ln y = C_{1}x + C_{2} \\ \therefore & y = C_{2}e^{C_{1}x} \\ \because & y(0) = y'(0)=1 \\ \therefore & C_{2} = 1; C_{1}C_{2} = 1 \\ \therefore & y = e^{x} \\ \end{array}

results matching ""

    No results matching ""