Section02_单调性与极值

极值的判断

  1. 定义y=f(x)(xD)y=f(x)\quad(x\in \mathbb{D})
    •  δ>0\exists\ \delta>0,当 0<xx0<δ0<\vert x-x_{0}\vert <\delta 时,f(x)<f(x0)f(x)<f(x_{0})x0x_{0}为极大值点,f(x0)f(x_{0})为极大值
    •  δ>0\exists\ \delta>0,当 0<xx0<δ0<\vert x-x_{0}\vert <\delta 时,f(x)>f(x0)f(x)>f(x_{0})x0x_{0}为极小值点,f(x0)f(x_{0})为极小值

Note: 极值点定不为端点

  1. 步骤
    1. 找出xDx\in \mathbb{D}
    2. 找出f(x){=0f'(x)\begin{cases}=0\\\nexists\end{cases} 对应的x0x_{0}
    3. 判别法
      1. Th1 第一充分条件(两种条件均可使用)
        1. {f(x)>0,x>x0f(x)<0,x<x0x=x0为极小值点\begin{cases}f(x)>0,x>x_{0}\\f(x)<0,x<x_{0}\end{cases}\Rightarrow x=x_{0}\text{为极小值点}
        2. {f(x)<0,x>x0f(x)>0,x<x0x=x0为极大值点\begin{cases}f(x)<0,x>x_{0}\\f(x)>0,x<x_{0}\end{cases}\Rightarrow x=x_{0}\text{为极大值点}
      2. Th2 第二充分条件(仅适用于f(x0)=0, f(x0)0f'(x_{0})=0,\exists\ f''(x_{0})\ne 0
        1. f(x0)<0x=x0为极大值点f''(x_{0})<0\Rightarrow x=x_{0}\text{为极大值点}
        2. f(x0)>0x=x0为极大值点f''(x_{0})>0\Rightarrow x=x_{0}\text{为极大值点}

问题类型

型一 极值点的判断

  • 例1 f(1)=0,limx1f(x)sinπx=1,x=1\displaystyle{f'(1)=0,\lim_{x\to 1}\frac{f'(x)}{\sin \pi x}=-1, x=1}是什么点? Method 1limx1f(x)sinπx=1δ>0,When 0<x1<δ,f(x)sinπx=1<0{f(1)<0,x(1δ,1)f(1)>0,x(1,1+δ)x=1为函数f(x)的极小值点Method 2limx1f(x)sin(π+π(x1))=1,f(1)=0limx1f(x)f(1)sin(π(x1))=1limx1sinπ(x1)π(x1)左式=limx1f(x)f(1)π(x1)=1f(1)=π>0x=1为极小值点 \begin{array}{ll} & \text{Method 1} \\ \because & \displaystyle{\lim_{x\to 1}\frac{f'(x)}{\sin \pi x}=-1} \\ \therefore & \exists \delta>0, \text{When }0<\vert x-1\vert<\delta, \frac{f'(x)}{\sin \pi x} = -1 <0 \\ \therefore & \begin{cases} f'(1) < 0, x\in(1-\delta,1) \\ f'(1) > 0, x\in(1, 1+\delta) \end{cases} \\ \therefore & x=1 \text{为函数}f(x) \text{的极小值点} \\\\ & \text{Method 2} \\ \because & \displaystyle{\lim_{x\to 1}\frac{f'(x)}{\sin (\pi + \pi(x-1))}=-1, f'(1) = 0}\\ \therefore & \displaystyle{\lim_{x\to 1}\frac{f'(x)-f'(1)}{- \sin (\pi(x-1))}=-1}\\ \because & \displaystyle{\lim_{x\to 1}\sin \pi(x-1) \sim \pi(x-1)} \\ \therefore & \text{左式}=\displaystyle{\lim_{x\to 1}\frac{f'(x)-f'(1)}{\pi(x-1)}} = 1 \\ & f''(1) = \pi > 0\\ \therefore & x=1 \text{为极小值点} \\ \end{array}
  • 例2 f(x)[,+]f(x)\in[-\infty,+\infty]f(x)f'(x)图像如下所示,f(x)f(x)有多少个极值点? _01.jpg) x=a,b,0,c,d,f(x){=0{f(x)>0,x<af(x)<0x>ax=a为极大值点{f(x)<0,x<bf(x)>0,x>bx=b为极小值点{f(x)>0,x<0f(x)<0,x>0x=0为极大值点{f(x)<0,x<cf(x)<0,x>cx=c不为极值点{f(x)<0,x<df(x)>0,x>dx=d为极小值点 \begin{array}{ll} & \text{当}x = a,b,0,c,d \text{时}, f'(x) \begin{cases} =0 \\ \nexists \end{cases} \\ \because & \begin{cases} f'(x) > 0, x<a \\ f'(x) < 0,x>a \end{cases} \\ \therefore & x = a \text{为极大值点} \\ \because & \begin{cases} f'(x) < 0, x<b \\ f'(x) > 0, x>b \end{cases} \\ \therefore & x = b \text{为极小值点} \\ \because & \begin{cases} f'(x)>0,x<0 \\ f'(x)<0, x>0 \end{cases} \\ \therefore & x=0 \text{为极大值点} \\ \because & \begin{cases} f'(x)<0, x<c \\ f'(x)<0, x>c \end{cases} \\ \therefore & x=c \text{不为极值点} \\ \because & \begin{cases} f'(x)<0, x<d \\ f'(x)>0, x>d \end{cases} \\ \therefore & x=d \text{为极小值点} \\ \end{array}
  • 例3 f(x)f(x)x=0x=0处二阶可导,f(0)=0f(0)=0limx0f(x)+f(x)x=2\displaystyle{\lim_{x\to 0}\frac{f(x)+f'(x)}{x} = 2},则: A. f(0)f(0)为极大值点 B. f(0)f(0)为极小值点 C. (0,f(0))(0,f(0))为拐点 D. f(0)f(0)不为极值点,(0,f(0))(0,f(0))也不为拐点 limx0f(x)+f(x)x=2limx0f(x)+f(x)=0f(0)=0limx0f(x)+f(x)x=limx0f(x)f(0)x0+limx0f(x)f(0)x0=f(0)+f(0)f(0)=2>0x=0为极小值点 \begin{array}{ll} \because & \displaystyle{\lim_{x\to 0}\frac{f(x)+f'(x)}{x}=2} \\ \therefore & \displaystyle{\lim_{x\to 0}f(x)+f'(x)} = 0 \\ \therefore & f'(0) = 0 \\ \therefore & \displaystyle{\lim_{x\to 0}\frac{f(x)+f'(x)}{x}=\lim_{x\to 0}\frac{f(x)-f(0)}{x-0}+\lim_{x\to 0}\frac{f'(x)-f'(0)}{x-0}} \\ & = f'(0) +f''(0) \\ \therefore & f''(0) = 2 >0 \\ \therefore & x=0 \text{为极小值点}\\ \end{array}
  • 例4 f(x)f(x)二阶可导,limx2f(x)(x2)3=23\displaystyle{\lim_{x\to 2}\frac{f'(x)}{(x-2)^{3}}=\frac{2}{3}},则: A. f(2)f(2)为极小值 B. f(2)f(2)为极大值 C. (2,f(2))(2,f(2))为拐点 D. f(2)f(2)不为极值,且(2,f(2))(2,f(2))不为拐点 limx2f(x)(x2)3=23f(2)=0 δ>0,0<x2<δ,f(x)(x2)3=23>0{f(x)<0,x(2δ,2)f(x)>0,x(2,2+δ)x=2为极小值点 \begin{array}{ll} \because & \displaystyle{\lim_{x\to 2}\frac{f'(x)}{(x-2)^{3}}=\frac{2}{3}} \\ \therefore & f'(2)=0 \\ & \exists\ \delta>0, 0<\vert x-2\vert <\delta, \frac{f'(x)}{(x-2)^{3}} = \frac{2}{3} > 0 \\ \therefore & \begin{cases} f'(x)<0, x\in(2-\delta,2) \\ f'(x)>0, x\in(2,2+\delta) \end{cases} \\ \therefore & x=2 \text{为极小值点}\\ \end{array}

型二 函数零点或方程的根

常用方法

  • 零点定理 f(x)C[a,b],f(a)f(b)<0 c(a,b),f(c)=0f(x)\in C[a,b],f(a)f(b)<0 \Rightarrow \exists\ c\in(a,b), f(c)=0
  • Rolle中值定理
    1. f(x)F(x)(F(x)=f(x))f(x)\Rightarrow F(x)\quad(F'(x)=f(x))
    2. F(a)=F(b),  ζ(a,b),F(ζ)=f(ζ)=0F(a)=F(b),\ \exists\ \zeta\in(a,b), F'(\zeta)=f(\zeta)=0
  • 单调性
    1. f(x)=()x(m,M)f(x)=(\cdots)\quad x\in(m,M)
    2. f(x){=0f'(x)\begin{cases}=0\\\nexists\end{cases}
    3. 关注两端的趋势limxmf(x),limxMf(x)\displaystyle{\lim_{x\to m}f(x), \lim_{x\to M}f(x)}

例题

  • 例1 a0+a12++ann=0\displaystyle{a_{0}+\frac{a_{1}}{2}+\cdots +\frac{a_{n}}{n} = 0},证明 a0+a1x++anxn=0a_{0}+a_{1}x+\cdots + a_{n}x^{n} = 0 至少有一正根

f(x)=a0+a1x++anxnF(x)=f(x)dxF(x)=a0x+a12x2++annxn+1F(0)=0,F(1)=a0+a12++anna0+a12++ann=0F(0)=F(1) ζ(0,1),F(ζ)=0f(ζ)=0原方程至少有一个正根 \begin{array}{ll} & \text{令}f(x) = a_{0} + a_{1}x +\cdots +a_{n}x^{n} \\ & \text{则}F(x) = \int f(x)\cdot dx \\ \therefore & F(x) = a_{0}x + \frac{a_{1}}{2}x^{2} + \cdots + \frac{a_{n}}{n}x^{n+1} \\ \because & F(0) = 0, F(1) = a_{0} + \frac{a_{1}}{2} + \cdots + \frac{a_{n}}{n} \\ \because & a_{0}+\frac{a_{1}}{2}+\cdots + \frac{a_{n}}{n} = 0\\ \therefore & F(0) = F(1) \\ \therefore & \exists\ \zeta\in(0,1), F'(\zeta) = 0 \\ & \text{即}f(\zeta) = 0 \\ \therefore & \text{原方程至少有一个正根} \\ \end{array}

  • 例2 证明ex=x2+4+a\displaystyle{e^{x} = -x^{2}+4+a} 不可能有3个不同解 f(x)=ex+x24xax1<x2<x3f(x)的3个零点 ζ1(x1,x2),ζ2(x2,x3)f(ζ1)=f(ζ2)=0 ζ(ζ1,ζ2),f(ζ)=0f(x)=ex+2>0原方程不可能存在3个不同解 \begin{array}{ll} & \text{令}f(x) = e^{x} + x^{2} - 4x -a \\ & \text{设}x_{1}<x_{2}<x_{3} \text{为}f(x)\text{的3个零点} \\ \therefore & \exists\ \zeta_{1}\in(x_{1},x_{2}), \zeta_{2}\in(x_{2},x_{3}) \\ & f'(\zeta_{1}) = f'(\zeta_{2}) = 0 \\ \therefore & \exists\ \zeta\in(\zeta_{1},\zeta_{2}), f''(\zeta)=0 \\ \because & f''(x) = e^{x} + 2 > 0 \\ \therefore & \text{原方程不可能存在3个不同解} \\ \end{array}
  • 例3 讨论xex=a(a>0)xe^{-x}=a\quad (a>0)的根的个数 f(x)=xexax[0,+)f(x)=ex(1x)f(1)=0{f(x)>0,x<1f(x)<0,x>1x=1为函数f(x)的最大值点f(0)=a<0,limn+xexa=a<0若函数有零点f(1)0a1ea>1e时,函数f(x)无零点,即原方程无解a=1e时,函数f(x)仅有一零点,即原方程仅有一个根a<1e时,函数f(x)仅有两零点,即原方程有两个不同根 \begin{array}{ll} & \text{令}f(x) = xe^{-x} - a \quad x\in[0,+\infty) \\ \therefore & f'(x) = e^{-x}(1-x) \\ \because & f'(1) = 0 \text{且} \begin{cases} f'(x)>0, x<1 \\ f'(x)<0, x>1 \end{cases} \\ \therefore & x=1 \text{为函数}f(x)\text{的最大值点} \\ \because & f(0) = -a<0, \displaystyle{\lim_{n\to +\infty}xe^{-x}-a} = -a<0\\ \therefore & \text{若函数有零点} f(1) \ge 0 \\ & a\le \frac{1}{e} \\ \therefore & a > \frac{1}{e} \text{时,函数}f(x)\text{无零点,即原方程无解} \\ & a = \frac{1}{e} \text{时,函数}f(x)\text{仅有一零点,即原方程仅有一个根} \\ & a < \frac{1}{e} \text{时,函数}f(x)\text{仅有两零点,即原方程有两个不同根} \\ \end{array}
  • 例4 讨论 lnx=xe2\displaystyle{\ln x = \frac{x}{e}-2} 的根 f(x)=lnxxe+2x(0,+)f(x)=1x1ef(e)=0{f(x)>0,x<ef(x)<0,x>ex=e为函数f(x)的最大值,f(e)=1>0limx0+f(x)=<0limx+f(x)=<0f(x)有两个零点,即原方程有两个不同根 \begin{array}{ll} & \text{令}f(x) = \ln x - \frac{x}{e} + 2\quad x\in(0,+\infty) \\ \therefore & f'(x) = \frac{1}{x} - \frac{1}{e} \\ \because & f'(e) = 0 \text{且} \begin{cases} f'(x)>0, x<e \\ f'(x)<0, x>e \end{cases} \\ \therefore & x=e \text{为函数}f(x)\text{的最大值}, f(e) = 1 > 0 \\ \because & \displaystyle{\lim_{x\to 0^{+}}f(x) = -\infty < 0} \\ & \displaystyle{\lim_{x\to +\infty}f(x) = -\infty < 0} \\ \therefore & f(x)\text{有两个零点,即原方程有两个不同根} \\ \end{array}

型三 不等式证明

常用方法

  1. 根据单调性
  2. 中值定理

例题

  • 例1 x>0x>0,证明 x1+x<ln(1+x)<x\displaystyle{\frac{x}{1+x}<\ln (1+x)<x} Method 1f(x)=x1+xln(1+x)x(0,+)g(x)=xln(1+x)x(0,+)f(x)=1(1+x)211+x=x(1+x)2{f(0)=0f(x)<0,x>0g(x)=x1+x{g(0)=0g(x)>0,x>0f(x)<limx0+f(x),g(x)>limx0+g(x)f(x)<0,g(x)>0x1+xln(1+x)<0xln(1+x)>0x1+x<ln(1+x)<xMethod 2f(x)=ln(1+x) ζ(0,x),f(ζ)=ln(1+x)ln(1+0)x0=ln(1+x)xf(ζ)=11+ζ11+x<f(ζ)<11+011+x<ln(1+x)x<11+0x>0x1+x<ln(1+x)<x \begin{array}{ll} & \text{Method 1} \\ & \text{令}f(x) = \frac{x}{1+x} - \ln(1+x)\quad x\in(0,+\infty)\\ & \text{令}g(x) = x - \ln(1+x)\quad x\in(0,+\infty) \\ \because & f'(x) = \frac{1}{(1+x)^{2}} - \frac{1}{1+x} = \frac{-x}{(1+x)^{2}} \text{且} \begin{cases} f'(0)=0 \\ f'(x)<0, x>0 \end{cases} \\ & g'(x) = \frac{x}{1+x} \text{且}\begin{cases} g'(0) = 0 \\ g'(x) > 0, x>0 \end{cases} \\ \therefore & \displaystyle{f(x) < \lim_{x\to 0^{+}}f(x), g(x)>\lim_{x\to 0^{+}}g(x)} \\ \therefore & f(x) < 0, g(x) > 0 \\ & \frac{x}{1+x} - \ln(1+x) < 0 \\ & x - \ln(1+x) > 0 \\ \therefore & \frac{x}{1+x} < \ln(1+x) < x \\ \\ & \text{Method 2} \\ & \text{令}f(x) = \ln(1+x) \\ \therefore & \exists\ \zeta\in(0,x), f'(\zeta) = \frac{\ln(1+x)-\ln(1+0)}{x-0} = \frac{\ln(1+x)}{x} \\ \because & f'(\zeta) = \frac{1}{1+\zeta} \\ \therefore & \frac{1}{1+x} < f'(\zeta) < \frac{1}{1+0}\\ & \frac{1}{1+x} < \frac{\ln(1+x)}{x} < \frac{1}{1+0} \\ \because & x > 0 \\ \therefore & \frac{x}{1+x} < \ln(1+x) < x \\ \end{array}
  • 例2 e<a<be<a<b,证明 ab>baa^{b}>b^{a} ab>baeblna>ealnbblna>alnbf(x)=xlnaalnxx(a,+)f(x)=lnaaxx>a>ef(x)=lnaax>0f(a)=0f(x)>f(a)=0x>ab>af(b)>0blnaalnb>0blna>alnbab>ba \begin{array}{ll} \because & a^{b} > b^{a} \Leftrightarrow e^{b\ln a} > e^{a\ln b} \Leftrightarrow b\ln a > a\ln b \\ & \text{令}f(x) = x\ln a - a\ln x\quad x\in(a,+\infty) \\ \therefore & f'(x) = \ln a - \frac{a}{x} \\ \because & x>a>e \\ \therefore & f'(x) = \ln a - \frac{a}{x} > 0 \\ \because & f(a) = 0 \\ \therefore & f(x) > f(a) = 0\quad x>a \\ \because & b > a \\ \therefore & f(b) > 0 \\ & b\ln a - a\ln b >0 \\ & b\ln a > a\ln b \\ & a^{b} > b^{a} \end{array}
  • 例3 0<a<b\displaystyle{0<a<b},证明 lnblnaba>2aa2+b2\displaystyle{\frac{\ln b - \ln a}{b-a}>\frac{2a}{a^{2}+b^{2}}} f(x)=lnxx(0,+) ζ(a,b)(0,+),f(ζ)=lnblnabaf(x)=1xa2+b2>2ab0<a<b2aa2+b2<2a2ab=1bf(ζ)=1ζ>1b>2aa2+b2f(ζ)=lnblnaba>2aa2+b2原不等式成立 \begin{array}{ll} & \text{令}f(x) = \ln x\quad x\in(0,+\infty) \\ \therefore & \exists\ \zeta \in(a,b)\subset(0,+\infty), f'(\zeta) = \frac{\ln b - \ln a}{b-a} \\ & \text{而}f'(x) = \frac{1}{x} \\ \because & a^{2}+b^{2} > 2ab \quad 0<a<b \\ \therefore & \frac{2a}{a^{2}+b^{2}} < \frac{2a}{2ab} = \frac{1}{b} \\ \because & f'(\zeta) = \frac{1}{\zeta} > \frac{1}{b} > \frac{2a}{a^{2}+b^{2}} \\ \therefore & f'(\zeta) = \frac{\ln b - \ln a}{b-a} > \frac{2a}{a^{2}+b^{2}} \\ & \text{原不等式成立} \end{array}
  • 例4 b>a>0b>a>0,证明 lnba>2(ba)a+b\displaystyle{\ln\frac{b}{a}>\frac{2(b-a)}{a+b}} lnba>2(ba)a+b(a+b)(lnblna)2(ba)>0f(x)=(a+x)(lnxlna)2(xa)x>af(a)=0,f(x)=(lnxlna)+a+xx2f(a)=0,f(x)=1x+ax2x>a>0f(x)>0f(x)>f(a)=0,x>af(x)>f(a)=0,x>ab>af(b)=(a+b)(lnblna)2(ba)>0lnba>2(ba)a+b \begin{array}{ll} & \ln \frac{b}{a} > \frac{2(b-a)}{a+b}\Leftrightarrow (a+b)(\ln b - \ln a) - 2(b-a) > 0 \\ & \text{令}f(x) = (a+x)(\ln x - \ln a) - 2(x-a) \quad x> a\\ \therefore & f(a) = 0, f'(x) = (\ln x -\ln a) + \frac{a+x}{x} - 2 \\ \therefore & f'(a) = 0, f''(x) = \frac{1}{x} + \frac{-a}{x^{2}} \\ \because & x>a>0 \\ \therefore & f''(x) > 0 \\ \therefore & f'(x) > f'(a) = 0,\quad x>a \\ \therefore & f(x) > f(a) = 0,\quad x>a \\ \because & b > a \\ \therefore & f(b) = (a+b)(\ln b - \ln a) - 2(b-a) > 0 \\ & \ln \frac{b}{a} > \frac{2(b-a)}{a+b} \end{array}

results matching ""

    No results matching ""