Section04_高阶线性微分方程

定义

  1. nn 阶齐次线性微分方程 ()(*) y(n)+a1(x)y(n1)++an1(x)y+an(x)y=0() y^{(n)} + a_{1}(x) y^{(n-1)} +\cdots +a_{n-1}(x)y'+ a_{n}(x)y = 0 \quad (*)
  2. nn 阶非齐次线性微分方程 ()(**) y(n)+a1(x)y(n1)++an1(x)y+an(x)y=f(x)() y^{(n)} + a_{1}(x) y^{(n-1)} +\cdots +a_{n-1}(x)y'+ a_{n}(x)y = f(x)\quad (**)
    • f(x)=f1(x)+f2(x)f(x) = f_{1}(x) + f_{2}(x) y(n)+a1(x)y(n1)++an1(x)y+an(x)y=f1(x)()y(n)+a1(x)y(n1)++an1(x)y+an(x)y=f2(x)() \begin{split} y^{(n)} + a_{1}(x) y^{(n-1)} +\cdots +a_{n-1}(x)y'+ a_{n}(x)y = f_{1}(x)\quad (**') \\ y^{(n)} + a_{1}(x) y^{(n-1)} +\cdots +a_{n-1}(x)y'+ a_{n}(x)y = f_{2}(x)\quad (**'') \end{split}

解的结构

  1. ϕ1(x),,ϕs(x)\phi_{1}(x), \cdots,\phi_{s}(x)()(*) 的解,则 y=k1ϕ1(x)++ksϕs(x)y = k_{1}\phi_{1}(x)+\cdots +k_{s}\phi_{s}(x) 还为 ()(*) 的解
  2. ϕ1(x),,ϕs(x)\phi_{1}(x), \cdots,\phi_{s}(x)()(**) 的解
    1. y=k1ϕ1(x)++ksϕs(x)y = k_{1}\phi_{1}(x)+\cdots +k_{s}\phi_{s}(x)()(*) 的解,则 k1++ks=0k_{1} + \cdots + k_{s} = 0
    2. y=k1ϕ1(x)++ksϕs(x)y = k_{1}\phi_{1}(x)+\cdots +k_{s}\phi_{s}(x)()(**) 的解,则 k1++ks=1k_{1} + \cdots + k_{s} = 1
  3. ϕ1(x),ϕ2(x)\phi_{1}(x),\phi_{2}(x) 分别为 (),()(*), (**) 的解,则 ϕ1(x)+ϕ2(x)\phi_{1}(x)+\phi_{2}(x)()(**) 的解
  4. ϕ1(x),ϕ2(x)\phi_{1}(x),\phi_{2}(x)()(**) 的解,则 ϕ1(x)ϕ2(x)\phi_{1}(x) - \phi_{2}(x)()(*) 的解 (2.1的特殊情况)
  5. ϕ1(x),ϕ2(x)\phi_{1}(x),\phi_{2}(x) 分别为 (),()(**'), (**'') 的解,则 ϕ1(x)+ϕ2(x)\phi_{1}(x)+\phi_{2}(x)()(**) 的解

特殊形式

Notes 一元二次方程的解 ax2+bx+c=0ax^{2} + bx + c =0 Δ=b24acx=b2a±b24ac2a\begin{array}{c}\displaystyle\Delta = b^{2} - 4ac\\\displaystyle x = -\frac{b}{2a}\pm \frac{\sqrt{b^{2}-4ac}}{2a} \end{array}

特一 二阶常系数齐次线性微分方程

y+py+qy=0()y'' + py' +qy = 0\quad (*)

通解

  1. 转化为特征方程 λ2+pλ+q=0\lambda^{2} + p\lambda + q = 0
  2. 解出 λ1,λ2\lambda_{1},\lambda_{2}
    1. Δ>0,λ1λ2\Delta > 0,\lambda_{1}\ne \lambda_{2} y=C1eλ1x+C2eλ2x y = C_{1}e^{\lambda_{1} x} + C_{2}e^{\lambda_{2} x}
    2. Δ=0,λ1=λ2\Delta =0,\lambda_{1} = \lambda{2} y=(C1+C2x)eλx y = (C_{1} + C_{2}x)e^{\lambda x}
    3. λ<0,λ1,2=α±βi\lambda <0, \lambda_{1,2} = \alpha \pm \beta i y=eαx(C1cosβx+C2sinβx) y = e^{\alpha x}(C_{1}\cos \beta x + C_{2}\sin \beta x)

例题

  1. y+y2y=0y'' + y' -2y = 0,求通解 特征方程为λ2+λ2=0{λ1=2λ2=1通解为y=C1e2x+C2ex \begin{array}{ll} & \text{特征方程为} \lambda^{2} + \lambda -2 =0 \\ \therefore & \begin{cases} \lambda_{1} = -2 \\ \lambda_{2} = 1 \end{cases} \\ \therefore & \text{通解为} y = C_{1}e^{-2x} + C_{2} e^{x} \\ \end{array}
  2. y4y+4y=0y'' - 4y' + 4y =0,求通解 特征方程为λ24λ+4=0λ1=λ2=2通解为y=(C1+C2x)e2x \begin{array}{ll} & \text{特征方程为} \lambda^{2} - 4\lambda + 4 =0 \\ \therefore & \lambda_{1} =\lambda_{2} = 2 \\ \therefore & \text{通解为} y = (C_{1} + C_{2}x)e^{2x} \\ \end{array}
  3. y2y+2y=0y'' -2y' +2y =0,求通解 特征方程为λ22λ+2=0λ1,2=1±i通解为y=ex(C1cosx+C2sinx) \begin{array}{ll} & \text{特征方程为} \lambda^{2} - 2\lambda + 2 =0 \\ \therefore & \lambda_{1,2} = 1 \pm i \\ \therefore & \text{通解为} y = e^{x}(C_{1}\cos x + C_{2}\sin x) \\ \end{array}

特二 二阶常系数非齐次线性微分方程

y+py+qy=f(x)() y'' + py' + qy = f(x)\quad (**)

通解

  • 通解=()的通解+()的特解\text{通解} = (*)\text{的通解} + (**)\text{的特解}

型一 f(x)=Pn(x)ekxf(x) = P_{n}(x) e^{kx}

  1. y+y2y=(2x+1)e2xy''+y'-2y = (2x+1)e^{2x},求通解 λ1λ2k\color{#D0104C}{\lambda_{1}\ne\lambda_{2}\ne k} 特征方程为λ2+λ2=0{λ1=2λ2=1y+y2y=0的通解为y=C1e2x+C2exC(x)=(ax+b)e2x为其的一个特解C(x)=ae2x+2(ax+b)e2xC(x)=2ae2x+e2x(2a+4ax+4b)2ae2x+e2x(2a+4ax+4b)+ae2x+2(ax+b)e2x2(ax+b)e2x=(2x+1)e2x(5a+4b+4ax)e2x=(2x+1)e2x{a=12b=38原方程的通解C1e2x+C2ex+(2x+1)e2x \begin{array}{ll} & \text{特征方程为} \lambda^{2} + \lambda - 2 =0 \\ \therefore & \begin{cases} \lambda_{1} =-2 \\ \lambda_{2}=1 \end{cases} \\ \therefore & y''+y'-2y=0 \text{的通解为} y = C_{1}e^{-2x} + C_{2}e^{x} \\ & \text{令} C(x) = (ax+b)e^{2x} \text{为其的一个特解} \\ \therefore & C'(x) = ae^{2x} + 2(ax + b)e^{2x} \\ & C''(x) = 2ae^{2x} + e^{2x}(2a +4ax + 4b) \\ \therefore & 2a e^{2x} + e^{2x}(2a+4ax+4b) + ae^{2x} + 2(ax+b)e^{2x} -2(ax+b)e^{2x} = (2x+1)e^{2x} \\ & (5a +4b +4ax)e^{2x} = (2x+1)e^{2x} \\ \therefore & \begin{cases} a=\frac{1}{2} \\ b= -\frac{3}{8} \end{cases} \\ \therefore & \text{原方程的通解} C_{1}e^{-2x} + C_{2}e^{x} + (2x+1)e^{2x} \\ \end{array}

  2. y3y+2y=(2x1)exy'' - 3y' + 2y = (2x-1)e^{x},求通解 λ1λ2=k\color{#D0104C}{\lambda_{1}\ne \lambda_{2} = k} 特征方程为λ23λ+2=0{λ1=2λ2=1y+y2y=0的通解为y=C1e2x+C2exy0(x)=x(ax+b)ex=(ax2+bx)ex为其的一个特解y0(x)=(2ax+b+ax2+bx)ex=(ax2+2ax+bx+b)exy0(x)=(2a+2ax+b+2ax+b+ax2+bx)ex=(ax2+bx+4ax+2a+2b)ex(ax2+bx+4ax+2a+2b)ex3(ax2+2ax+bx+b)ex+2(ax2+bx)ex=(2x1)ex(2ax+2ab)ex=(2x1)ex{a=1b=1原方程的通解C1e2x+C2ex+(x2x)ex \begin{array}{ll} & \text{特征方程为} \lambda^{2} - 3\lambda + 2 =0 \\ \therefore & \begin{cases} \lambda_{1} =2 \\ \lambda_{2} =1 \end{cases} \\ \therefore & y''+y'-2y=0 \text{的通解为} y = C_{1}e^{2x} + C_{2}e^{x} \\ & \text{令} y_{0}(x) = x(ax+b)e^{x} = (ax^{2} + bx)e^{x} \text{为其的一个特解} \\ \therefore & y_{0}'(x) = (2ax + b + ax^{2}+bx)e^{x} = (ax^{2} + 2ax + bx +b)e^{x} \\ & y_{0}''(x) = (2a +2ax +b +2ax + b + ax^{2} + bx) e^{x} = (ax^{2} + bx + 4ax +2a + 2b)e^{x} \\ \therefore & (ax^{2} + bx + 4ax +2a + 2b)e^{x} - 3(ax^{2} + 2ax + bx +b)e^{x} + 2(ax^{2} + bx)e^{x}= (2x-1)e^{x} \\ & (-2ax +2a-b) e^{x} = (2x-1)e^{x} \\ \therefore & \begin{cases} a=-1 \\ b= -1 \end{cases} \\ \therefore & \text{原方程的通解} C_{1}e^{2x} + C_{2}e^{x} + (-x^{2}-x)e^{x} \\ \end{array}

  3. y4y+4y=(3x1)e2xy'' - 4y' + 4y = (3x-1)e^{2x} 求通解 λ1=λ2=k\color{#D0104C}{\lambda_{1} = \lambda_{2} = k} 特征方程为λ24λ+4=0λ1=λ2=2y+y2y=0的通解为y=(C1+C2x)e2xy0(x)=x2(ax+b)e2x=(ax3+bx2)e2x为其的一个特解(ax3+bx2)=6ax+2b=3x1{a=12b=12通解为y=(C1+C2x)e2x+(12x312x2)e2x \begin{array}{ll} & \text{特征方程为} \lambda^{2} - 4\lambda + 4 =0 \\ \therefore & \lambda_{1} = \lambda_{2} = 2 \\ \therefore & y''+y'-2y=0 \text{的通解为} y = (C_{1} + C_{2}x)e^{2x} \\ & \text{令} y_{0}(x) = x^{2}(ax+b)e^{2x} = (ax^{3} + bx^{2})e^{2x} \text{为其的一个特解} \\ \therefore & (ax^{3} + bx^{2})'' = 6ax + 2b = 3x -1 \\ \therefore & \begin{cases} a = \frac{1}{2} \\ b = -\frac{1}{2} \end{cases} \\ \therefore & \text{通解为} y = (C_{1} + C_{2}x)e^{2x} + (\frac{1}{2}x^{3}-\frac{1}{2}x^{2})e^{2x} \\ \end{array}

Notes 对于 λ1=λ2=k\lambda_{1} = \lambda_{2} = k 的情形,特解 y0(x)=Q(x)ekxy_{0}(x) = Q(x)e^{kx}Q(x)=(ax3+bx2)=Pn(x)Q(x)'' = (ax^{3} + bx^{2})'' = P_{n}(x)

results matching ""

    No results matching ""