Section02_一阶微分方程

可分离变量的微分方程

定义

  • dydx=f(x,y)\displaystyle \frac{dy}{dx} = f(x,y)f(x,y)=ϕ2(x)ϕ2(y)\displaystyle f(x,y) = \phi_{2}(x)\phi_{2}(y) 则称为可分离变量的微分方程

解法

dydx=ϕ1(x)ϕ2(y)dyϕ2(y)=ϕ1(x)dx+C \frac{dy}{dx} = \phi_{1}(x)\phi_{2}(y) \Rightarrow \int \frac{dy}{\phi_{2}(y)} = \int \phi_{1}(x)\cdot dx + C

例题

  1. dydx=1+x+y2+xy2\displaystyle \frac{dy}{dx} = 1 + x + y^{2} + xy^{2} 的通解 dydx=1+x+y2+xy2=(1+x)(1+y2)1+y2>0dy1+y2=(1+x)dxdy1+y2=(1+x)dx+Carctany=x+12x2+Cy=tan(x+12x2+C) \begin{array}{ll} & \displaystyle \frac{dy}{dx} = 1 + x + y^{2} + xy^{2} = (1+x)(1+y^{2}) \\ \because & 1+y^{2} > 0 \\ \therefore & \displaystyle \frac{dy}{1+y^{2}} = (1+x)\cdot dx \\ & \displaystyle \int_{}^{}\frac{dy}{1+y^{2}} = \int_{}^{} (1+x) \cdot dx + C \\ \therefore & \arctan y = x + \frac{1}{2} x^{2} + C\\ & y = \tan(x+\frac{1}{2}x^{2} +C) \end{array}
  2. dydx=2xy\displaystyle \frac{dy}{dx} = 2xy 求通解 When y=0y=0为该方程的一个解When y0dyy=2xdxdyy=2xdx+C0lny=x2+C0y=eC0ex2y=(±eC0)ex2y0±eC0(,0)(0,+)±eC0=C通解为y={Cex2C(,0)(0,+)0y=Cex2C(,+) \begin{array}{ll} & \text{When } y = 0 \\ \therefore & y = 0 \text{为该方程的一个解} \\ & \text{When } y \neq 0 \\ \therefore & \displaystyle \frac{dy}{y} = 2x\cdot dx \\ & \displaystyle \int_{}^{}\frac{dy}{y} = \int_{}^{} 2x\cdot dx + C_{0} \\ \therefore & \ln \vert y \vert = x^{2} + C_{0} \\ & \vert y \vert = e^{C_{0}}e^{x^{2}} \\ \therefore & y = (\pm e^{C_{0}})e^{x^{2}} \\ \because & y \ne 0 \\ \therefore & \pm e^{C_{0}} \in (-\infty, 0)\cup(0,+\infty) \\ \therefore & \text{令} \pm e^{C_{0}} = C \\ \therefore & \text{通解为} y = \begin{cases} Ce^{x^{2}}\quad C\in(-\infty, 0)\cup(0,+\infty) \\ 0\\ \end{cases} \\ & \text{即} y = Ce^{x^{2}} \quad C\in (-\infty, +\infty) \end{array}

齐次微分方程

定义

  • dydx=f(x,y)\displaystyle \frac{dy}{dx} = f(x,y)f(x,y)=ϕ(yx)\displaystyle f(x,y) = \phi(\frac{y}{x}) 则为齐次微分方程

解法

u=yx,y=uxd(ux)dx=u+xdudx=f(u)duf(u)u=dxxduf(u)u=dxx+C解出u=u(x),再将u=yx代入 \begin{array}{ll} & \text{令} u = \frac{y}{x}, \text{则} y = ux \\ \therefore & \displaystyle \frac{d(ux)}{dx} = u + \frac{xdu}{dx} = f(u) \\ \therefore & \displaystyle \frac{du}{f(u)-u} = \frac{dx}{x} \\ & \displaystyle \int_{}^{} \frac{du}{f(u) - u} = \int_{}^{} \frac{dx}{x} +C \\ & \text{解出} u = u(x), \text{再将}u =\frac{y}{x} \text{代入} \end{array}

例题

  1. dydx=2yx1\displaystyle \frac{dy}{dx} = 2\frac{y}{x} - 1 u=yx,y=uxu+xdudx=2u1duu1=dxxduu1=dxx+lnCln(u1)=lnCxu1=Cxyx2=Cxy=Cx2+2x \begin{array}{ll} & \text{令} u = \frac{y}{x}, \text{则} y = ux \\ \therefore & \displaystyle u + x \frac{du}{dx} = 2u - 1\\ & \displaystyle \frac{du}{u-1} = \frac{dx}{x} \\ \therefore & \displaystyle \int_{}^{} \frac{du}{u-1} = \int_{}^{} \frac{dx}{x} + \ln C \\ & \ln(u-1) = \ln Cx \\ \therefore & u-1 = Cx \\ & \frac{y}{x} - 2 = Cx \\ & y = Cx^{2} + 2x \end{array}
  2. xdy(y+x2+y2)dx=0(x>0)\displaystyle xdy - (y+\sqrt{x^{2}+y^{2}})\cdot dx = 0\quad (x>0),求通解 dydx=yx+1+(yx)2yx=uu+xdudx=u+1+u2du1+u2=dxxdu1+u2=dxx+lnCln(u+1+u2)=lnCxy+y2+x2=Cx2 \begin{array}{ll} & \displaystyle \frac{dy}{dx} = \frac{y}{x} + \sqrt{1 + \bigg(\frac{y}{x}\bigg)^{2}} \\ & \displaystyle \text{令}\frac{y}{x} = u \\ \therefore & \displaystyle u + x\frac{du}{dx} = u + \sqrt{1+u^{2}}\\ & \displaystyle \frac{du}{\sqrt{1+u^{2}}} = \frac{dx}{x} \\ \therefore & \displaystyle \int_{}^{} \frac{du}{\sqrt{1+u^{2}}} = \int_{}^{} \frac{dx}{x} + \ln C\\ & \ln (u + \sqrt{1+u^{2}}) = \ln Cx \\ \therefore & y + \sqrt{y^{2}+ x^{2}} = Cx^{2}\\ \end{array}

一阶齐次线性微分方程 重点

定义

  • 形如 dydx+p(x)y=0\displaystyle \frac{dy}{dx}+p(x)y = 0 称为一阶齐次线性微分方程

解法

dydx+p(x)y=0dyy=p(x)dxdyy=p(x)dx+lnCy=Cep(x)dx \begin{array}{ll} & \displaystyle \frac{dy}{dx} + p(x) y = 0 \\ & \displaystyle \frac{dy}{y} = -p(x)dx \\ & \displaystyle \int_{}^{} \frac{dy}{y} = \int_{}^{}-p(x)\cdot dx + \ln C \\\\ & \displaystyle \color{#D0104C}{y = C e^{-\int_{}^{}p(x)\cdot dx}} \end{array}

例题

  1. dydx=2xy\displaystyle \frac{dy}{dx} = 2xy dydx=2xydydx2xy=0p(x)=2xy=Ce2xdx=Cex2 \begin{array}{ll} & \displaystyle \frac{dy}{dx} = 2xy \\ & \displaystyle \frac{dy}{dx} - 2xy = 0 \\ \therefore & p(x) = -2x \\ & \displaystyle y = Ce^{-\int_{}^{}-2x\cdot dx} = C e^{x^{2}} \end{array}
  2. xy2y=0\displaystyle xy'-2y =0 xy2y=0y2xy=0p(x)=2xy=Ce2xdxy=Ce2lnx=Cx2 \begin{array}{ll} & xy' - 2y = 0\\ & y' - \frac{2}{x} y = 0 \\ \therefore & p(x) = -\frac{2}{x} \\ \therefore & y = Ce^{-\int_{}^{}-\frac{2}{x}\cdot dx} \\ & y = Ce^{2\ln x} = C x^{2} \end{array}
  3. dydxxy=0\displaystyle \frac{dy}{dx} - xy = 0,求满足 y(0)=πy(0) = \pi 的特解 dydxxy=0p(x)=xy=Cexdx=Ce12x2y(0)=ππ=C特解为y=πe12x2 \begin{array}{ll} & \frac{dy}{dx} - xy = 0 \\ \therefore & p(x) = -x \\ \therefore & y = Ce^{-\int_{}^{}-x\cdot dx} = C e^{\frac{1}{2}x^{2}} \\ \because & y(0) = \pi \\ \therefore & \pi = C \\ \therefore & \text{特解为} y = \pi e^{\frac{1}{2}x^{2}} \\ \end{array}

一阶非齐次线性微分方程

定义

  • 形如 dydx+p(x)y=Q(x)\displaystyle \frac{dy}{dx} + p(x)y = Q(x)

解法:常数变易法

对于dydx+p(x)=0,通解为y=Cep(x)dx对于dydx+p(x)=Q(x),通解为y=C(x)ep(x)dxy=C(x)ep(x)dxC(x)p(x)ep(x)dxC(x)ep(x)dxC(x)p(x)ep(x)dx+p(x)C(x)ep(x)dx=Q(x)C(x)=Q(x)ep(x)dxC(x)=Q(x)ep(x)dxdx+C \begin{array}{ll} & \text{对于} \frac{dy}{dx} + p(x) = 0 \text{,通解为} y = Ce^{-\int p(x)\cdot dx} \\ & \text{对于} \frac{dy}{dx} + p(x) = Q(x) \text{,通解为} y = C(x)e^{-\int p(x)\cdot dx} \\ \therefore & y' = C'(x)e^{-\int_{}^{}p(x)\cdot dx} - C(x)p(x)e^{-\int_{}^{}p(x)\cdot dx} \\ \therefore & C'(x)e^{-\int_{}^{}p(x)\cdot dx} - C(x)p(x)e^{-\int_{}^{}p(x)\cdot dx} + p(x)C(x)e^{-\int_{}^{}p(x)\cdot dx} = Q(x) \\ \therefore & C'(x) = Q(x)e^{\int_{}^{}p(x)\cdot dx} \\ \therefore & C(x) = \int_{}^{}Q(x)e^{\int_{}^{}p(x)\cdot dx} \cdot dx +C\\ \end{array}

y=[Q(x)ep(x)dxdx+C]ep(x)dx \color{#D0104C}{y = \bigg[\int Q(x)e^{\int p(x)\cdot dx}\cdot dx + C\bigg]e^{-\int p(x)\cdot dx}}

例题

  1. dydx=2yx1\displaystyle \frac{dy}{dx} = 2\frac{y}{x}-1 dydx21xy=1p(x)=2x,Q(x)=1y=[1e2xdxdx+C]e2xdx=[x1+C]x2=Cx2+x \begin{array}{ll} & \frac{dy}{dx} - 2 \frac{1}{x}y = -1 \\ \therefore & p(x) = -\frac{2}{x}, Q(x) = -1 \\ \therefore & y = [\int_{}^{} -1 e ^{\int_{}^{}-\frac{2}{x}\cdot dx}\cdot dx + C] e ^{- \int_{}^{}-\frac{2}{x}\cdot dx}\\ & = [x^{-1} + C] x^{2} = Cx^{2} +x \end{array}
  2. y+ytanx=cosx\displaystyle y' + y\tan x = \cos x p(x)=tanx,Q(x)=cosxy=[cosxetanxdxdx+C]etanxdxy=[cosxeln(cosx)dx+C]eln(cosx)y=[1dx+C]cosxy=xcosx+Ccosx \begin{array}{ll} \therefore & p(x) = \tan{x}, Q(x) = \cos x \\ \therefore & y = [\int_{}^{} \cos x e^{\int_{}^{}\tan x\cdot dx} \cdot dx + C] e^{- \int_{}^{}\tan x\cdot dx} \\ & y = [\int_{}^{}\cos x e^{-\ln (\cos x)}\cdot dx + C] e^{\ln (\cos x)} \\ & y = [\int_{}^{}1 \cdot dx + C]\cos x \\ & y = x\cos x + C\cos x \end{array}

results matching ""

    No results matching ""