Section01c_中值定理 (3)
Th4 Taylor中值定理
导入
lim x → 0 x − sin x x 3 ≠ x − x x 3 Conjection ∃ k , sin x = x + k x 3 + o ( x 3 ) lim x → 0 x − sin x x 3 = x − x − k x 3 − o ( x 3 ) x 3 = − k
\begin{split}
&\lim_{x\to 0}\frac{x-\sin x}{x^{3}}\neq\frac{x-x}{x^{3}}\\
\text{Conjection}\ &\exists\ k, \sin x=x+ kx^{3} + o(x^{3}) \\
& \lim_{x\to 0}\frac{x-\sin x}{x^{3}} = \frac{x-x-kx^{3}-o(x^{3})}{x^{3}} = -k
\end{split}
Conjection x → 0 lim x 3 x − sin x = x 3 x − x ∃ k , sin x = x + k x 3 + o ( x 3 ) x → 0 lim x 3 x − sin x = x 3 x − x − k x 3 − o ( x 3 ) = − k
定理
条件 :f ( x ) f(x) f ( x ) 在x = x 0 x=x_{0} x = x 0 的领域内n + 1 n+1 n + 1 阶可导
结论 :f ( x ) = P n ( x ) + R n ( x ) f(x) = P_{n}(x)+R_{n}(x) f ( x ) = P n ( x ) + R n ( x )
P n ( x ) = f ( x 0 ) + f ′ ( x 0 ) ( x − x 0 ) + f ′ ′ ( x 0 ) 2 ! ( x − x 0 ) 2 + ⋯ + f ( n ) ( x 0 ) n ! ( x − x 0 ) n \displaystyle{P_{n}(x) = f(x_{0})+f'(x_{0})(x-x_{0})+\frac{f''(x_{0})}{2!}(x-x_{0})^{2}+\cdots+\frac{f^{(n)}(x_{0})}{n!}(x-x_{0})^{n}} P n ( x ) = f ( x 0 ) + f ′ ( x 0 ) ( x − x 0 ) + 2 ! f ′′ ( x 0 ) ( x − x 0 ) 2 + ⋯ + n ! f ( n ) ( x 0 ) ( x − x 0 ) n
R n ( x ) = { f ( n + 1 ) ( ξ ) ( n + 1 ) ! ( x − x 0 ) n + 1 拉格朗日型 o ( ( x − x 0 ) n ) 皮亚诺型 \displaystyle{R_{n}(x) = \begin{cases}\frac{f^{(n+1)}(\xi)}{(n+1)!}(x-x_{0})^{n+1}&\text{拉格朗日型}\\o((x-x_{0})^{n})&\text{皮亚诺型}\end{cases}} R n ( x ) = { ( n + 1 )! f ( n + 1 ) ( ξ ) ( x − x 0 ) n + 1 o (( x − x 0 ) n ) 拉格朗日型 皮亚诺型
特殊情况 :若x 0 = 0 x_{0}=0 x 0 = 0
P n ( x ) = f ( 0 ) + f ′ ( 0 ) x + f ′ ′ ( 0 ) 2 ! x 2 + ⋯ + f ( n ) ( 0 ) n ! x n = f ( 0 ) + ∑ i = 1 n f ( i ) ( 0 ) i ! x i
\begin{split}
P_{n}(x) = & f(0) +f'(0)x+\frac{f''(0)}{2!}x^{2}+\cdots+\frac{f^{(n)}(0)}{n!}x^{n} \\
= & f(0)+\sum_{i=1}^{n}\frac{f^{(i)}(0)}{i!}x^{i}
\end{split}
P n ( x ) = = f ( 0 ) + f ′ ( 0 ) x + 2 ! f ′′ ( 0 ) x 2 + ⋯ + n ! f ( n ) ( 0 ) x n f ( 0 ) + i = 1 ∑ n i ! f ( i ) ( 0 ) x i
需记 x 0 = 0 x_{0}=0 x 0 = 0 时的Taylor展开
e x = 1 + x + x 2 2 ! + ⋯ + x n n ! + o ( x n ) e^{x} = 1 + x +\frac{x^{2}}{2!}+\cdots+\frac{x^{n}}{n!}+o(x^n) e x = 1 + x + 2 ! x 2 + ⋯ + n ! x n + o ( x n )
sin x = x − 1 3 ! x 3 + 1 5 ! x 5 − ⋯ + ( − 1 ) n ( 2 n + 1 ) ! x 2 n + 1 + o ( x 2 n + 1 ) \sin x = x - \frac{1}{3!}x^{3}+\frac{1}{5!}x^{5} - \cdots+\frac{(-1)^{n}}{(2n+1)!}x^{2n+1}+o(x^{2n+1}) sin x = x − 3 ! 1 x 3 + 5 ! 1 x 5 − ⋯ + ( 2 n + 1 )! ( − 1 ) n x 2 n + 1 + o ( x 2 n + 1 )
cos x = 1 − 1 2 ! x 2 + 1 4 ! x 4 − ⋯ + ( − 1 ) n 2 n ! x 2 n + ( x 2 n ) \cos x = 1 - \frac{1}{2!}x^{2} + \frac{1}{4!}x^{4}-\cdots+\frac{(-1)^{n}}{2n!}x^{2n}+(x^{2n}) cos x = 1 − 2 ! 1 x 2 + 4 ! 1 x 4 − ⋯ + 2 n ! ( − 1 ) n x 2 n + ( x 2 n )
1 1 − x = 1 + x + x 2 + x 3 + ⋯ + x n + o ( x n ) \frac{1}{1-x} = 1 + x + x^{2} + x^{3} + \cdots+x^{n} + o(x^{n}) 1 − x 1 = 1 + x + x 2 + x 3 + ⋯ + x n + o ( x n )
1 1 + x = 1 − x + x 2 − x 3 + ⋯ − ( − 1 ) n x n + o ( x n ) \frac{1}{1+x} = 1 -x+x^{2}-x^{3}+\cdots-(-1)^{n}x^{n}+o(x^n) 1 + x 1 = 1 − x + x 2 − x 3 + ⋯ − ( − 1 ) n x n + o ( x n )
ln ( 1 + x ) = x − x 2 + x 3 + ⋯ + ( − 1 ) n − 1 x n + o ( x n ) \ln(1+x)= x - x^{2}+x^{3}+\cdots +(-1)^{n-1}x^{n}+o(x^{n}) ln ( 1 + x ) = x − x 2 + x 3 + ⋯ + ( − 1 ) n − 1 x n + o ( x n )
( 1 + x ) a = 1 + a x + a ( a − 1 ) 2 ! x 2 + ⋯ + a ! ( a − n ) ! n ! x n + o ( x n ) (1+x)^{a} = 1 + ax + \frac{a(a-1)}{2!}x^{2}+\cdots+\frac{a!}{(a-n)!n!}x^{n}+o(x^{n}) ( 1 + x ) a = 1 + a x + 2 ! a ( a − 1 ) x 2 + ⋯ + ( a − n )! n ! a ! x n + o ( x n )
arctan x = x − x 3 3 + x 5 5 − ⋯ + ( − 1 ) n 2 n + 1 x 2 n + 1 + o ( x 2 n + 1 ) \arctan x = x-\frac{x^{3}}{3}+\frac{x^{5}}{5}-\cdots+\frac{(-1)n}{2n+1}x^{2n+1}+o(x^{2n+1}) arctan x = x − 3 x 3 + 5 x 5 − ⋯ + 2 n + 1 ( − 1 ) n x 2 n + 1 + o ( x 2 n + 1 )
Proof
∵ ( arctan x ) ′ = 1 1 + x 2 and 1 1 + x = 1 − x + x 2 − x 3 + ⋯ + ( − 1 ) n x n + o ( x n ) ∴ 1 1 + x 2 = 1 − x 2 + x 4 − x 6 + ⋯ + ( − 1 ) n x 2 n + o ( x 2 n ) ∵ arctan x = ∫ 1 1 + x 2 ⋅ d x ∴ arctan x = ∫ ( 1 − x 2 + x 4 − x 6 + ⋯ + ( − 1 ) n x 2 n ) ⋅ d x + R n ( x ) = x − x 3 3 + x 5 5 − x 7 7 + ⋯ + ( − 1 ) n x 2 n + 1 2 n + 1 + o ( x 2 n + 1 )
\begin{array}{ll}
\because & (\arctan x)' =\frac{1}{1 + x^{2}} \text{ and } \frac{1}{1+x} = 1-x+x^{2}-x^{3}+\cdots+(-1)^{n}x^{n}+o(x^{n}) \\
\therefore & \frac{1}{1+x^{2}} = 1-x^{2} +x^{4} -x^{6} + \cdots +(-1)^{n}x^{2n} +o(x^{2n}) \\
\because & \arctan x = \int \frac{1}{1+x^{2}}\cdot dx \\
\therefore & \arctan x = \int (1-x^{2}+x^{4}-x^{6}+\cdots +(-1)^{n}x^{2n})\cdot dx + R_{n}(x) \\
& = x-\frac{x^{3}}{3} + \frac{x^{5}}{5}-\frac{x^{7}}{7} +\cdots +\frac{(-1)^{n}x^{2n+1}}{2n+1} +o(x^{2n+1})
\end{array}
∵ ∴ ∵ ∴ ( arctan x ) ′ = 1 + x 2 1 and 1 + x 1 = 1 − x + x 2 − x 3 + ⋯ + ( − 1 ) n x n + o ( x n ) 1 + x 2 1 = 1 − x 2 + x 4 − x 6 + ⋯ + ( − 1 ) n x 2 n + o ( x 2 n ) arctan x = ∫ 1 + x 2 1 ⋅ d x arctan x = ∫ ( 1 − x 2 + x 4 − x 6 + ⋯ + ( − 1 ) n x 2 n ) ⋅ d x + R n ( x ) = x − 3 x 3 + 5 x 5 − 7 x 7 + ⋯ + 2 n + 1 ( − 1 ) n x 2 n + 1 + o ( x 2 n + 1 )
例题
例1 lim x → 0 e − x 2 2 − 1 + x 2 2 x 3 sin x \displaystyle{\lim_{x\to 0}\frac{e^{-\frac{x^{2}}{2}}-1+\frac{x^{2}}{2}}{x^{3}\sin x}} x → 0 lim x 3 sin x e − 2 x 2 − 1 + 2 x 2
∵ e x = 1 + x + 1 2 ! x 2 + o ( x 2 ) ∴ e − x 2 2 = 1 − x 2 2 + x 4 2 2 2 ! + o ( x 4 ) 原式 = lim x → 0 1 − x 2 2 + 1 8 x 4 − 1 + x 2 2 + o ( x 4 ) x 4 = 1 8 + lim x → 0 o ( x 4 ) x 4 = 1 8
\begin{array}{ll}
\because & e^{x} = 1 + x + \frac{1}{2!}x^{2} + o(x^{2}) \\
\therefore & e^{- \frac{x^{2}}{2}} = 1-\frac{x^{2}}{2}+\frac{x^{4}}{2^{2}2!}+o(x^{4}) \\
& \text{原式} = \displaystyle{\lim_{x\to 0}\frac{1-\frac{x^{2}}{2}+\frac{1}{8}x^{4}-1+\frac{x^{2}}{2}+o(x^{4})}{x^{4}}}\\
& = \displaystyle{\frac{1}{8}+\lim_{x\to 0}\frac{o(x^{4})}{x^{4}} = \frac{1}{8}}
\end{array}
∵ ∴ e x = 1 + x + 2 ! 1 x 2 + o ( x 2 ) e − 2 x 2 = 1 − 2 x 2 + 2 2 2 ! x 4 + o ( x 4 ) 原式 = x → 0 lim x 4 1 − 2 x 2 + 8 1 x 4 − 1 + 2 x 2 + o ( x 4 ) = 8 1 + x → 0 lim x 4 o ( x 4 ) = 8 1
例2 lim x → 0 1 + x + 1 − x − 2 x 2 \displaystyle{\lim_{x\to 0}\frac{\sqrt{1+x}+\sqrt{1-x}-2}{x^{2}}} x → 0 lim x 2 1 + x + 1 − x − 2
∵ ( 1 + x ) a = 1 + a x + a ( a − 1 ) 2 ! x 2 + o ( x 2 ) ∴ 1 + x = 1 + 1 2 x + 1 2 ( − 1 2 ) 2 x 2 + o ( x 2 ) 1 − x = 1 − 1 2 x + 1 2 ( − 1 2 ) 2 x 2 + o ( x 2 ) ∴ 原式 = lim x → 0 2 − 1 4 x 2 + o ( x 2 ) − 2 x 2 = − 1 4
\begin{array}{ll}
\because & (1+x)^{a} = 1 + a x +\frac{a(a-1)}{2!}x^{2} + o(x^{2}) \\
\therefore & \sqrt{1+x} = 1+\frac{1}{2}x + \frac{\frac{1}{2}(-\frac{1}{2})}{2} x^{2} + o(x^{2}) \\
& \sqrt{1-x} = 1-\frac{1}{2}x +\frac{\frac{1}{2}(-\frac{1}{2})}{2}x^{2} + o(x^{2}) \\
\therefore & \text{原式} = \displaystyle{\lim_{x\to 0}\frac{2-\frac{1}{4}x^{2}+o(x^{2})-2}{x^{2}}} = -\frac{1}{4} \\
\end{array}
∵ ∴ ∴ ( 1 + x ) a = 1 + a x + 2 ! a ( a − 1 ) x 2 + o ( x 2 ) 1 + x = 1 + 2 1 x + 2 2 1 ( − 2 1 ) x 2 + o ( x 2 ) 1 − x = 1 − 2 1 x + 2 2 1 ( − 2 1 ) x 2 + o ( x 2 ) 原式 = x → 0 lim x 2 2 − 4 1 x 2 + o ( x 2 ) − 2 = − 4 1