Section01b_中值定理 (2)

型一 证明f(n)(ξ)=0f^{(n)}(\xi)=0

常用方法

  1. Case 1 f(ξ)=0f'(\xi)=0,寻找f(?)=f(?)f(?)=f(?)
  2. Case 2 f(ξ)=0f''(\xi)=0,寻找f(?)=f(?)f'(?)=f'(?)f(?)=f(?)=f(?)f(?)=f(?)=f(?)

例题

  • 例1 f(x)C[0,2]f(x)\in C[0,2],在(0,2)(0,2)内可导且3f(0)=f(1)+2f(2)3f(0)=f(1)+2f(2)。证明: ξ(a,b)\exists\ \xi\in(a,b),使得f(ξ)=0f'(\xi)=0 f(x)C[0,2]f(x)C[1,2],  m,M3mf(1)+2f(2)3M3f(0)=f(1)+2f(2)mf(0)M c(1,2), f(c)=f(0) ξ(0,c)(0,1), f(ξ)=0 \begin{array}{ll} \because & f(x)\in C[0,2] \\ & \text{设}f(x)\in C[1,2],\ \exists\ m,M \\ \therefore & 3m\le f(1) + 2f(2)\le 3M\\ \because & 3f(0) = f(1)+2f(2) \\ \therefore & m\le f(0)\le M \\ \therefore & \exists\ c\in(1,2),\ f(c) = f(0) \\ \therefore & \exists\ \xi\in(0,c)\subset(0,1),\ f'(\xi)=0 \\ \end{array}
  • 例2 f(x)f(x)二阶可导,且limx0f(x)1x=0\displaystyle{\lim_{x\to 0}\frac{f(x)-1}{x}=0}f(1)=1f(1)=1,证明: ξ(0,1), f(ξ)=0\exists\ \xi\in(0,1),\ f''(\xi)=0 limx0f(x)1x=0f(0)=1,f(0)=0f(0)=f(1)=1 c(0,1), f(c)=0f(c)=f(0) ξ(0,c)(0,1), f(ξ)=0 \begin{array}{ll} \because & \displaystyle{\lim_{x\to 0}\frac{f(x)-1}{x}} = 0\\ \therefore & f(0) = 1, f'(0) = 0 \\ \because & f(0)=f(1)=1 \\ \therefore & \exists\ c\in(0,1),\ f'(c) = 0 \\ \because & f'(c)=f'(0) \\ \therefore & \exists\ \xi\in(0,c)\subset(0,1),\ f''(\xi) = 0\\ \end{array}
  • 例3 f(x)f(x)二阶可导,且limx0f(x)x=1\displaystyle{\lim_{x\to 0}\frac{f(x)}{x}=1}f(1)=1f(1)=1,证明: ξ(0,1), f(ξ)=0\exists\ \xi\in(0,1),\ f''(\xi)=0 limx0f(x)x=1f(0)=0,f(0)=1f(0)=0,f(1)=1 c(0,1),f(c)=f(1)f(0)10=1f(c)=f(0) ξ(0,c)(0,1),f(ξ)=0 \begin{array}{ll} \because & \displaystyle{\lim_{x\to 0}\frac{f(x)}{x}} = 1\\ \therefore & f(0)=0, f'(0)=1 \\ \because & f(0)=0, f(1)=1 \\ \therefore & \exists\ c\in(0,1), f'(c)= \frac{f(1)-f(0)}{1-0} = 1 \\ \because & f'(c) = f'(0) \\ \therefore & \exists\ \xi\in(0,c)\subset(0,1), f'(\xi)=0 \\ \end{array}
  • 例4 f(x)f(x)二阶可导,存在 L: y=f(x)\text{L: }y=f(x),连A(a,f(a)),B(b,f(b))\text{A}(a,f(a)), \text{B}(b,f(b))L\text{L}C(c,f(c))a<c<b\text{C}(c,f(c))\quad a<c<b,证明  ξ(a,b),f(ξ)=0\exists\ \xi\in(a,b), f''(\xi)=0 连A(a,f(a)),B(b,f(b))交L于C(c,f(c)) ξ1(a,c),ξ2(c,b), f(ξ1)=f(c)f(a)ca,f(ξ2)=f(b)f(c)bcA,B,C三点共线f(ξ1)=f(ξ2) ξ(ξ1,ξ2)(a,b), f(ξ)=0 \begin{array}{ll} \because & \text{连A}(a, f(a)), \text{B}(b, f(b))\text{交L于C}(c, f(c)) \\ \therefore & \exists\ \xi_{1}\in(a,c), \xi_{2}\in(c,b),\ f'(\xi_{1}) = \frac{f(c)-f(a)}{c-a}, f'(\xi_{2})=\frac{f(b)-f(c)}{b-c} \\ \because & \text{A,B,C三点共线} \\ \therefore & f'(\xi_{1})=f'(\xi_{2}) \\ \therefore & \exists\ \xi\in(\xi_{1},\xi_{2})\subset(a,b),\ f''(\xi)=0 \\ \end{array}

型二 仅有ξ\xi

常用方法

  1. 还原法
    1. 条件{仅有ξ导数差一阶两项\begin{cases}\text{仅有}\xi\\\text{导数差一阶}\\\text{两项}\end{cases}
    2. 工具 ff=(lnf), ff=(lnf)\displaystyle{\frac{f'}{f} = (\ln f)',\ \frac{f''}{f'} = (\ln f')'}
  2. 分组法
    1. 条件{仅有ξ导数差一阶非两项\begin{cases}\text{仅有}\xi\\ \text{导数差一阶}\\ \text{非两项}\end{cases}
    2. 思想:将非两项凑成两项,如:g(n)(x)±g(n1)(x)n=1,2,g^{(n)}(x)\pm g^{(n-1)}(x)\quad n=1,2,\cdots

例题

  • 例1 设f(x)C[0,1]f(x)\in C[0,1],在(0,1)(0,1)内可导,f(1)=0f(1)=0 证明: ξ(0,1)\exists\ \xi\in(0,1),使 2f(ξ)+ξf(ξ)=02f(\xi)+\xi f'(\xi)=0 Analysis2f(x)+xf(x)=02x+f(x)x=0(lnx2+lnf(x))=0[ln(x2f(x))]=0Proofϕ(x)=x2f(x)ϕ(0)=0,f(1)=0ϕ(0)=ϕ(1)=0 ξ(0,1),ϕ(ξ)=0ϕ(x)=2xf(x)+x2f(x)ξ(0,1)2f(ξ)+ξf(ξ)=0 \begin{array}{ll} & \text{Analysis} \\ & 2f(x) + xf'(x) = 0 \\ \Rightarrow & \frac{2}{x}+\frac{f'(x)}{x}=0 \\ \Rightarrow & (\ln x^{2} + \ln f(x))' = 0 \\ \Rightarrow & [\ln(x^{2}f(x))]' = 0 \\\\ & \text{Proof} \\ & \text{令}\phi(x) = x^{2}f(x) \\ \because & \phi(0) =0, f(1)=0 \\ \therefore & \phi(0) = \phi(1) = 0 \\ \therefore & \exists\ \xi\in(0,1), \phi'(\xi)=0 \\ & \text{而}\phi'(x) = 2xf(x)+x^{2}f'(x) \\ \because & \xi\in(0,1) \\ \therefore & 2f(\xi) +\xi f'(\xi) = 0 \\ \end{array}
  • 例2 f(x)C[a,b]f(x)\in C[a,b],在(a,b)(a,b)内可导,f(a)=f(b)=0f(a)=f(b)=0,证明: ξ(a,b)\exists\ \xi\in(a,b),使f(ξ)2f(ξ)=0f'(\xi)-2f(\xi)=0 Analysisf(x)2f(x)=0f(x)f(x)2=0[lnf(x)lne2x]=0[lnf(x)e2x]=0Proofϕ(x)=f(x)e2xf(a)=f(b)=0ϕ(a)=ϕ(b)=0 ξ(a,b),ϕ(ξ)=0ϕ(x)=e2x[f(x)2f(x)](e2x)2=f(x)2f(x)e2xe2x0f(ξ)2f(ξ)=0 \begin{array}{ll} & \text{Analysis} \\ & f'(x)-2f(x) = 0 \\ \Rightarrow & \frac{f'(x)}{f(x)} - 2 = 0 \\ \Rightarrow & [\ln f(x) - \ln e^{2x}]' = 0 \\ \Rightarrow & \big[\ln \frac{f(x)}{e^{2x}}\big]' = 0 \\\\ & \text{Proof} \\ & \text{令}\phi(x) = \frac{f(x)}{e^{2x}} \\ \because & f(a) = f(b) = 0 \\ \therefore & \phi(a) = \phi(b) = 0 \\ \therefore & \exists\ \xi\in(a,b), \phi'(\xi)=0 \\ & \text{而}\phi'(x) = \frac{e^{2x}[f'(x)-2f(x)]}{(e^{2x})^{2}} = \frac{f'(x)-2f(x)}{e^{2x}}\\ \because & e^{2x}\neq 0 \\ \therefore & f'(\xi) - 2f(\xi) = 0 \\ \end{array}
  • 例3 f(x)f(x)[0,1][0,1] 上二阶可导,且f(0)=f(1)f(0)=f(1) 证明: ξ(0,1)\exists\ \xi\in(0,1),使f(ξ)=2f(ξ)1ξ\displaystyle{f''(\xi) = \frac{2f'(\xi)}{1-\xi}} Analysisf(x)=2f(x)1xf(x)f(x)+2x1=0[lnf(x)+ln(x1)2]=0[ln(x1)2f(x)]=0Proofϕ(x)=(x1)2f(x)f(0)=f(1)c(0,1),f(c)=0ϕ(c)=ϕ(1)=0 ξ(c,1)(0,1),ϕ(ξ)=0ϕ(x)=2(x1)f(x)+(x1)2f(x)ξ(0,1)2f(ξ)ξ1+f(ξ)=0f(ξ)=2f(ξ)1ξ \begin{array}{ll} & \text{Analysis} \\ & f''(x) = \frac{2f'(x)}{1-x} \\ \Rightarrow & \frac{f''(x)}{f'(x)} + \frac{2}{x-1} = 0 \\ \Rightarrow & [\ln f'(x) + \ln (x-1)^{2}]' = 0 \\ \Rightarrow & [\ln (x-1)^{2}f'(x)]' = 0 \\\\ & \text{Proof} \\ & \text{令}\phi(x) = (x-1)^{2}f'(x) \\ \because & f(0) = f(1) \\ \therefore & \exists c\in(0,1), f'(c) = 0 \\ \therefore & \phi(c) = \phi(1) = 0 \\ \therefore & \exists\ \xi\in(c,1)\subset(0,1), \phi'(\xi)=0 \\ & \text{而}\phi'(x) = 2(x-1)f'(x) + (x-1)^{2}f''(x) \\ \because & \xi\in(0,1) \\ \therefore & \frac{2f'(\xi)}{\xi-1}+f''(\xi) = 0 \\ & f''(\xi) = \frac{2f'(\xi)}{1-\xi} \end{array}
  • 例4 f(x)f(x) 二阶可导,limx0f(x)x=1,f(1)=1\displaystyle{\lim_{x\to 0}\frac{f(x)}{x} = 1, f(1)=1} 证: ξ(0,1), f(ξ)f(ξ)+1=0\exists\ \xi\in(0,1),\ f''(\xi)-f'(\xi) +1 = 0 Analysisf(x)f(x)+1=0[f(x)1][f(x)x]=0g(x)=f(x)xg(x)g(x)=0g(x)g(x)1=0[lng(x)][lnex]=0[lng(x)ex]=0Proofϕ(x)(=g(x)ex)=f(x)1exlimx0f(x)x=1f(0)=0,f(0)=1f(0)=0,f(1)=1 c(0,1),f(c)=f(1)f(1)10=1ϕ(c)=0=ϕ(0) ξ(0,c)(0,1),ϕ(ξ)=0ϕ(x)=ex[f(x)f(x)+1](ex)2=f(x)f(x)+1exex0f(ξ)f(ξ)+1=0 \begin{array}{ll} & \text{Analysis} \\ & f''(x) - f'(x) + 1 = 0 \\ \Rightarrow & [f'(x)-1]' - [f(x)-x]' = 0 \\ \Rightarrow & \text{令}g(x) = f(x)-x \\ \Rightarrow & g''(x)-g'(x) = 0 \\ \Rightarrow & \frac{g''(x)}{g'(x)} - 1= 0 \\ \Rightarrow & [\ln g'(x)]' - [\ln e^{x}]' = 0 \\ \Rightarrow & \big[\ln \frac{g'(x)}{e^{x}}\big]' = 0 \\\\ & \text{Proof} \\ & \text{令}\phi(x) \big(= \frac{g'(x)}{e^{x}}\big) = \frac{f'(x)-1}{e^{x}} \\ \because & \displaystyle{\lim_{x\to 0}\frac{f(x)}{x} = 1} \\ \therefore & f(0) = 0, f'(0) = 1 \\ \because & f(0) = 0, f(1) = 1 \\ \therefore & \exists\ c\in(0,1), f'(c) = \frac{f(1)-f(1)}{1-0} = 1 \\ \therefore & \phi(c) = 0 = \phi(0) \\ \therefore & \exists\ \xi\in(0,c)\subset(0,1), \phi'(\xi)=0 \\ & \text{而}\phi'(x) = \frac{e^{x}[f''(x)-f'(x)+1]}{(e^{x})^{2}} = \frac{f''(x)-f'(x)+1}{e^{x}} \\ \because & e^{x}\neq 0 \\ \therefore & f''(\xi)-f'(\xi)+1 = 0 \end{array}

型三 有ξ\xia,ba,b

常用方法

  1. Case 1 ξ\xia,ba,b 可分离
    1. ξ\xia,ba,b 分离
    2. a,ba,b 一侧{f(b)f(a) or f(b)f(a)baLagrangef(b)f(a)g(b)g(a)Cauchy\displaystyle{\begin{cases}f(b)-f(a)\text{ or }\frac{f(b)-f(a)}{b-a}\Rightarrow \text{Lagrange}\\\frac{f(b)-f(a)}{g(b)-g(a)}\Rightarrow \text{Cauchy}\end{cases}}
  2. Case 2 ξ\xia,ba,b 不可分离
    1. ξ\xi 换为 xx
    2. 去分母,移项()=0()=0\Rightarrow (\cdots) = 0\Rightarrow(\cdots)' = 0

例题

  • 例1 ab>0(a<b)ab>0\quad(a<b),证: ξ(a,b)\exists\ \xi\in(a,b) 使得 aebbea=(ab)(1ξ)eξae^{b}-be^{a} = (a-b)(1-\xi)e^{\xi} Analysisaebbea=(ab)(1ξ)eξaebbeaab=(1ξ)eξebbeaa1b1ag(x)=exx,h(x)=1xProofg(x)=exx,h(x)=1xh(x)0 ξ(a,b),g(ξ)h(ξ)=g(b)g(a)h(b)h(a)g(x)=ex(x1)x2,h(x)=1x2eξ(ξ1)=g(b)g(a)h(b)h(a)eξ(1ξ)=aebbeaabaebbea=(ab)eξ(1ξ) \begin{array}{ll} & \text{Analysis} \\ & ae^{b}-be^{a}=(a-b)(1-\xi)e^{\xi} \\ \Rightarrow & \frac{ae^{b}-be^{a}}{a-b} = (1-\xi)e^{\xi} \\ \Rightarrow & \frac{\frac{e^{b}}{b}-\frac{e^{a}}{a}}{\frac{1}{b}-\frac{1}{a}} \\ \Rightarrow & \text{令}g(x) = \frac{e^{x}}{x}, h(x) = \frac{1}{x} \\\\ & \text{Proof} \\ & \text{令}g(x) = \frac{e^{x}}{x}, h(x) = \frac{1}{x} \\ \because & h'(x) \neq 0 \\ \therefore & \exists\ \xi\in(a,b), \frac{g'(\xi)}{h'(\xi)} = \frac{g(b)-g(a)}{h(b)-h(a)} \\ & \text{而}g'(x) = \frac{e^{x}(x-1)}{x^{2}}, h'(x) = -\frac{1}{x^{2}}\\ \therefore & -e^{\xi}(\xi -1) = \frac{g(b)-g(a)}{h(b)-h(a)}\\ & e^{\xi}(1-\xi) = \frac{ae^{b}-be^{a}}{a-b} \\ & ae^{b}-be^{a} = (a-b)e^{\xi}(1-\xi) \end{array}
  • 例2 f(x),g(x)C[a,b]f(x),g(x)\in C[a,b],在(a,b)(a,b)内可导且g(x)0g'(x)\neq 0,证明  ξ(a,b)\exists\ \xi\in(a,b),使得 f(x)f(ξ)g(ξ)g(b)=f(ξ)g(ξ)\displaystyle{\frac{f(x)-f(\xi)}{g(\xi)-g(b)}=\frac{f'(\xi)}{g'(\xi)}} Analysisf(a)f(x)g(x)g(b)=f(x)g(x)g(x)[f(a)f(x)][g(x)g(b)]f(x)=0{[f(a)f(x)][g(x)g(b)]}=0Proofϕ(x)=[f(a)f(x)][g(b)g(x)]ϕ(a)=ϕ(b)=0 ξ(a,b),ϕ(ξ)=0ϕ(x)=g(x)[f(a)f(x)][g(x)g(b)]f(x)g(ξ)[f(a)f(ξ)][g(ξ)g(b)]f(ξ)=0g(x)0g(x)g(b)0xbf(a)f(ξ)g(ξ)g(b)=f(ξ)g(ξ) \begin{array}{ll} & \text{Analysis} \\ & \frac{f(a) - f(x)}{g(x)-g(b)} = \frac{f'(x)}{g'(x)} \\ \Rightarrow & g'(x)[f(a)-f(x)] - [g(x)-g(b)]f'(x) = 0 \\ \Rightarrow & \{[f(a)-f(x)][g(x)-g(b)]\}' = 0\\\\ & \text{Proof} \\ & \text{令}\phi(x) = [f(a)-f(x)][g(b)-g(x)] \\ \therefore & \phi(a) = \phi(b) = 0 \\ \therefore & \exists\ \xi\in(a,b), \phi'(\xi) = 0 \\ & \text{而}\phi'(x) = g'(x)[f(a)-f(x)]-[g(x)-g(b)]f'(x) \\ \therefore & g'(\xi)[f(a)-f(\xi)] - [g(\xi)-g(b)]f'(\xi) = 0\\ \because & g'(x) \neq 0 \\ \therefore & g(x) - g(b) \neq 0\quad x\ne b \\ \therefore & \frac{f(a)-f(\xi)}{g(\xi)-g(b)} = \frac{f'(\xi)}{g'(\xi)} \\ \end{array}

型四 多中值

常用方法

  1. Case 1
    1. 条件:仅有f(ξ),f(η)f'(\xi), f'(\eta)
    2. 方法
      1. 找三点
      2. 两次Lagrange\text{Lagrange}
  2. Case 2
    1. ξ,η\xi,\eta 项的复杂程度不同
    2. 方法
      1. 保留复杂中值项
      2. 并将复杂项转化为{()Lagrange()()Cauchy\displaystyle{\begin{cases}(\cdots)'\Rightarrow \text{Lagrange}\\\frac{(\cdots)'}{(\cdots)'}\Rightarrow \text{Cauchy}\end{cases}}

例题

  • 例1 f(x)C[0,1]f(x)\in C[0,1],在(0,1)(0,1)内可导,f(0)=0,f(1)=1f(0)=0, f(1)=1
    1. 证明  c(0,1)\exists\ c\in(0,1),使得f(c)=1cf(c) = 1-c ϕ(x)=f(x)1+xϕ(0)=1,ϕ(1)=1ϕ(0)ϕ(1)=1<0 c(0,1),ϕ(c)=0f(c)=1c\begin{array}{ll} & \text{令}\phi(x) = f(x) - 1 + x \\ \because & \phi(0) = -1, \phi(1) = 1 \\ \therefore & \phi(0)\phi(1) = -1 < 0 \\ \therefore & \exists\ c \in (0,1), \phi(c) = 0 \\ \therefore & f(c) = 1-c \\ \end{array}
    2. 证明  ξ,η(0,1)(ξη)\exists\ \xi,\eta\in(0,1)\quad(\xi\neq\eta),使得 f(ξ)f(η)=1f'(\xi)f'(\eta)=1 由题1得f(c)=1c ξ(0,c),η(c,1),f(ξ)=f(c)f(0)c0=1cc,f(η)=f(1)f(c)1c=c1cf(ξ)f(η)=1 \begin{array}{ll} & \text{由题1得}f(c) = 1-c \\ \therefore & \exists\ \xi\in(0,c),\eta\in(c,1), \\ & f'(\xi) = \frac{f(c)-f(0)}{c-0} = \frac{1-c}{c}, \\ & f'(\eta) = \frac{f(1)-f(c)}{1-c} = \frac{c}{1-c} \\ \therefore & f'(\xi)f'(\eta) = 1 \\ \end{array}
  • 例2 f(x)C[0,1]f(x)\in C[0,1],在(0,1)(0,1)内可导,且f(0)=0,f(1)=1f(0)=0,f(1)=1
    1. 证明: c(0,1)\exists\ c\in(0,1),使f(c)=12f(c)=\frac{1}{2} ϕ(x)=f(x)12ϕ(0)=12,ϕ(1)=12ϕ(0)ϕ(1)<0c(0,1),ϕ(c)=0f(c)=12 \begin{array}{ll} & \text{令}\phi(x) = f(x)-\frac{1}{2} \\ \therefore & \phi(0) = -\frac{1}{2}, \phi(1) = \frac{1}{2} \\ \therefore & \phi(0)\phi(1)<0 \\ \therefore & \exists c\in(0,1), \phi(c) = 0 \\ \therefore & f(c) = \frac{1}{2} \\ \end{array}
    2. 证明: ξ(0,c),η(c,1)\exists\ \xi\in(0,c), \eta\in(c,1),使1f(ξ)+1f(η)=2\displaystyle{\frac{1}{f'(\xi)}+\frac{1}{f'(\eta)}=2} f(0)=0,f(1)=1,f(c)=12 ξ(0,c),η(c,1)f(ξ)=f(c)f(0)c0=12cf(η)=f(1)f(c)1c=12(1c)1f(ξ)+1f(η)=2c+2(1c)=2 \begin{array}{ll} \because & f(0) = 0, f(1)=1, f(c) = \frac{1}{2} \\ \therefore & \exists\ \xi\in (0,c), \eta\in (c,1) \\ & f'(\xi) = \frac{f(c)-f(0)}{c-0} = \frac{1}{2c} \\ & f'(\eta) = \frac{f(1)-f(c)}{1-c} = \frac{1}{2(1-c)} \\ \therefore & \frac{1}{f'(\xi)} + \frac{1}{f'(\eta)} = 2c + 2(1-c) = 2 \\ \end{array}
  • 例3 f(x)C[a,b]f(x)\in C[a,b],在(a,b)(a,b)内可导,f(a)=f(b),f+(a)>0f(a)=f(b), f'_{+}(a) >0,证明: ξ,η(a,b)\exists\ \xi,\eta\in(a,b),使得f(ξ)>0,f(η)<0f'(\xi)>0,f'(\eta)<0 f+(a)>0 c(a,b),f(c)>f(a) ξ(a,c),η(c,b)f(ξ)=f(c)f(a)caf(η)=f(b)f(c)bcf(c)>f(a),f(a)=f(b),a<c<bf(ξ)>0,f(η)<0 \begin{array}{ll} \because & f'_{+}(a) > 0 \\ \therefore & \exists\ c\in(a,b), f(c) > f(a) \\ \therefore & \exists\ \xi\in(a,c), \eta\in(c,b) \\ & f'(\xi) = \frac{f(c)-f(a)}{c-a} \\ & f'(\eta) = \frac{f(b)-f(c)}{b-c} \\ \because & f(c)>f(a), f(a) =f(b), a<c<b \\ \therefore & f'(\xi) > 0, f'(\eta) <0 \\ \end{array}
  • 例4 f(x)C[a,b]f(x)\in C[a,b],在(a,b)(a,b)内可导,且f(a)=f(b)=1f(a)=f(b)=1,证明: ξ,η(a,b)\exists\ \xi,\eta\in(a,b),使eηξ[f(η)+f(η)]=1e^{\eta-\xi}[f'(\eta)+f'(\eta)] = 1 Analysiseηξ[f(η)+f(η)]=1eη[f(η)+f(η)]=eξ左式=(eηf(η))Proofϕ(x)=exf(x)f(a)=f(b)=1ϕ(a)=ea,ϕ(b)=eb η(a,b),ϕ(η)=ebeabaϕ(x)=ex[f(x)+f(x)]eη[f(η)+f(η)]=ebeabah(x)=ex ξ(a,b),h(ξ)=h(b)h(a)ba=ebeaba;h(x)=ex ξ(a,b),eξ=ebeabaeη[f(η)+f(η)]=eξeηξ[f(η)+(η)]=1 \begin{array}{ll} & \text{Analysis} \\ & e^{\eta-\xi}[f'(\eta)+f(\eta)] = 1 \\ \Rightarrow & e^{\eta}[f'(\eta)+f(\eta)] = e^{\xi} \\ \Rightarrow & \text{左式}=(e^{\eta}f(\eta))' \\\\ & \text{Proof} \\ & \text{令}\phi(x) = e^{x}f(x) \\ \because & f(a) = f(b) =1 \\ \therefore & \phi(a) = e^{a},\phi(b) = e^{b} \\ \therefore & \exists\ \eta\in(a,b), \phi'(\eta) = \frac{e^{b}-e^{a}}{b-a} \\ & \text{而}\phi'(x) = e^{x}[f'(x)+f(x)] \\ \therefore & e^{\eta}[f'(\eta)+f(\eta)] = \frac{e^{b}-e^{a}}{b-a} \\ & \text{令}h(x) = e^{x} \\ \because & \exists\ \xi\in(a,b), h'(\xi) = \frac{h(b)-h(a)}{b-a} = \frac{e^{b}-e^{a}}{b-a};\text{且} h'(x)=e^{x} \\ \therefore & \exists\ \xi\in(a,b), e^{\xi} = \frac{e^{b}-e^{a}}{b-a} \\ \therefore & e^{\eta}[f'(\eta)+f(\eta)] = e^{\xi} \\ & e^{\eta-\xi}[f'(\eta)+'(\eta)]=1 \end{array}
  • 例5 f(x)C[a,b]f(x)\in C[a,b],在(a,b)(a,b)内可导(a>0)(a>0) 证明: ξ,η(a,b)\exists\ \xi,\eta\in(a,b),使得f(ξ)=(a+b)f(η)2ηf'(\xi)=(a+b)\frac{f'(\eta)}{2\eta} Analysisf(ξ)=(a+b)f(η)2ηf(ξ)(a+b)=f(η)(x2)Proofg(x)=x2x[a,b]a>0g(x)0 η(a,b),f(η)g(η)=f(b)f(a)g(b)g(a)=f(b)f(a)b2a2g(x)=2xf(η)2η=f(b)f(a)(ba)(b+a) ξ(a,b),f(ξ)=f(b)f(a)baf(η)2η=f(ξ)b+af(ξ)=(a+b)f(η)2η \begin{array}{ll} & \text{Analysis} \\ & f'(\xi)=(a+b)\frac{f'(\eta)}{2\eta} \\ \Rightarrow & \frac{f'(\xi)}{(a+b)} = \frac{f'(\eta)}{(x^{2})'} \\\\ & \text{Proof} \\ & \text{令}g(x) = x^{2}\quad x\in[a,b] \\ \because & a > 0 \\ \therefore & g'(x) \neq 0\\ \therefore & \exists\ \eta\in(a,b), \frac{f'(\eta)}{g'(\eta)} = \frac{f(b)-f(a)}{g(b)-g(a)} = \frac{f(b)-f(a)}{b^{2}-a^{2}} \\ & \text{而}g'(x) = 2x \\ \therefore & \frac{f'(\eta)}{2\eta} = \frac{f(b)-f(a)}{(b-a)(b+a)} \\ \because & \exists\ \xi\in(a,b), f'(\xi) = \frac{f(b)-f(a)}{b-a} \\ \therefore & \frac{f'(\eta)}{2\eta} = \frac{f'(\xi)}{b+a} \\ & f'(\xi) = (a+b)\frac{f'(\eta)}{2\eta} \end{array}
  • 例6 f(x)C[a,b]f(x)\in C[a,b],在(a,b)(a,b)内可导(a>0)(a>0) 证明 ξ,η(a,b)\exists\ \xi,\eta\in(a,b),使得abf(ξ)=η2f(η)ab\cdot f'(\xi) = \eta^{2}f'(\eta) Analysisabf(ξ)=η2f(η)abf(ξ)=f(η)1η2右式=f(η)(1x)Proofg(x)=1xx[a,b]a>0g(x)0 η(a,b),f(η)g(η)=f(b)f(a)g(b)g(a)=f(b)f(a)1a1b=abf(b)f(a)bag(x)=1x2η2f(η)=abf(b)f(a)ba ξ(a,b),f(ξ)=f(b)f(a)baη2f(η)=abf(ξ) \begin{array}{ll} & \text{Analysis} \\ & ab\cdot f'(\xi) = \eta^{2}f'(\eta) \\ \Rightarrow & ab\cdot f'(\xi) = \frac{f'(\eta)}{\frac{1}{\eta^{2}}} \\ \Rightarrow & \text{右式}=\frac{f'(\eta)}{(-\frac{1}{x})'} \\\\ & \text{Proof} \\ & \text{令}g(x) = -\frac{1}{x}\quad x\in[a,b] \\ \because & a > 0 \\ \therefore & g'(x) \neq 0\\ \therefore & \exists\ \eta\in(a,b), \frac{f'(\eta)}{g'(\eta)} = \frac{f(b)-f(a)}{g(b)-g(a)} = \frac{f(b)-f(a)}{\frac{1}{a}-\frac{1}{b}} = ab\cdot \frac{f(b)-f(a)}{b-a} \\ & \text{而}g'(x) = \frac{1}{x^{2}} \\ \therefore & \eta^{2}f'(\eta) = ab\cdot \frac{f(b)-f(a)}{b-a} \\ \because & \exists\ \xi\in(a,b), f'(\xi) = \frac{f(b)-f(a)}{b-a} \\ \therefore & \eta^{2}f'(\eta) = ab\cdot f'(\xi) \end{array}

型六 Lagrange的应用

常见情形

  1. f(b)f(a)Lagrangef(b)-f(a)\Rightarrow \text{Lagrange}
  2. f(a),f(b),f(c) or f(a),f(b),f(c)Lagrange×2f(a),f(b),f(c)\text{ or }f'(a),f'(b),f'(c)\Rightarrow \text{Lagrange}\times 2
  3. fff\Leftrightarrow f' 且无积分

例题

  • 例1 limx+x2(sin1x1sin1x+1)\displaystyle{\lim_{x\to +\infty}x^{2}\bigg(\sin \frac{1}{x-1}-\sin\frac{1}{x+1}\bigg)} f(t)=sint ξ(1x1,1x+1),f(ξ)=sin1x1sin1x+11x11x+1sin1x1sin1x+1=2x21f(ξ)原式=limx+2x2x21f(ξ)limx+1x+1=limx+1x+1=0原式=limx+2x22x21f(0)=limx+2x22x21cos0=2 \begin{array}{ll} & \text{令}f(t) = \sin t \\ \therefore & \exists\ \xi\in(\frac{1}{x-1},\frac{1}{x+1}), f'(\xi)=\frac{\sin \frac{1}{x-1}-\sin\frac{1}{x+1}}{\frac{1}{x-1}-\frac{1}{x+1}} \\ & \sin \frac{1}{x-1}- \sin \frac{1}{x+1} = \frac{2}{x^{2}-1}f'(\xi)\\ \therefore & \displaystyle{\text{原式}=\lim_{x\to +\infty}\frac{2x^{2}}{x^{2}-1}f'(\xi)} \\ \because & \displaystyle{\lim_{x\to +\infty}\frac{1}{x+1} = \lim_{x\to +\infty}\frac{1}{x+1 = 0}} \\ \therefore & \text{原式}= \displaystyle{\lim_{x\to +\infty}\frac{2x^{2}}{2x^{2}-1}f'(0) = \lim_{x\to +\infty}\frac{2x^{2}}{2x^{2}-1}\cos 0 = 2} \\ \end{array}
  • 例2 limxf(x)=e\displaystyle{\lim_{x\to\infty}f'(x)=e},且limx[f(x)f(x1)]=limx(x+cxc)x\displaystyle{\lim_{x\to \infty}[f(x)-f(x-1)]=\lim_{x\to\infty}\bigg(\frac{x+c}{x-c}\bigg)^{x}},求cc  ξ(x1,x), f(ξ)=f(x)f(x1)x(x1)=f(x)f(x1)左式=limxf(ξ)limxx=limxx1=左式=limξf(ξ)=elimx(x+cxc)x=elimx[(1+2cxc)xc2c]x2cxc=elimx2cxxc=e2c2c=1c=12 \begin{array}{ll} \because & \exists\ \xi\in(x-1,x),\ f'(\xi) = \frac{f(x)-f(x-1)}{x-(x-1)} = f(x)-f(x-1) \\ \therefore & \text{左式}=\displaystyle{\lim_{x\to \infty}f'(\xi)} \\ \because & \displaystyle{\lim_{x\to \infty}x=\lim_{x\to \infty}x-1 = \infty} \\ \therefore & \text{左式} = \displaystyle{\lim_{\xi\to \infty}f'(\xi) = e} \\ \therefore & \displaystyle{\lim_{x\to \infty}\bigg(\frac{x+c}{x-c}\bigg)^{x} = e} \\ & \displaystyle{\lim_{x\to \infty}\bigg[\bigg(1+\frac{2c}{x-c}\bigg)^{\frac{x-c}{2c}}}\bigg]^{x\frac{2c}{x-c}} = e^{\lim_{x\to \infty}\frac{2cx}{x-c}} = e^{2c} \\ \therefore & 2c = 1 \\ & c=\frac{1}{2} \end{array}
  • 例3 f(0)=0,f(x)>0f(0)=0,f''(x)>0,证:2f(1)<f(2)2f(1)<f(2) f(0)=0 ξ1(0,1), ξ2(1,2)f(ξ1)=f(1)f(0)10=f(1)f(ξ2)=f(2)f(1)21=f(2)f(1)f(x)>0 且 ξ2>ξ1f(ξ2)>f(ξ1)f(2)f(1)>f(1)f(2)>2f(1) \begin{array}{ll} \because & f(0) = 0 \\ \therefore & \exists\ \xi_{1}\in(0,1),\ \xi_{2}\in(1,2) \\ & f'(\xi_{1}) = \frac{f(1)-f(0)}{1-0} = f(1) \\ & f'(\xi_{2}) = \frac{f(2)-f(1)}{2-1} = f(2)-f(1) \\ \because & f''(x)>0 \text{ 且 } \xi_{2}>\xi_{1} \\ \therefore & f'(\xi_{2})>f'(\xi_{1}) \\ & f(2)-f(1)>f(1) \\ & f(2) > 2f(1) \end{array}
  • 例4 f(x)f(x)[a,b][a,b]上可导,且f(x)M\vert f'(x)\vert\le Mf(x)f(x)(a,b)(a,b)内至少有一个零点,证明 f(a)+f(b)M(ba)\vert f(a)\vert + \vert f(b)\vert \le M(b-a) f(x)(a,b)内至少有一个零点x=c(a<c<b)时,有f(c)=0 ξ1(a,c), ξ2(c,b)f(ξ1)=f(c)f(a)ca=f(a)caf(ξ2)=f(b)f(c)bc=f(b)bcf(x)Mf(ξ1)=f(a)caMf(ξ2)=f(b)bcMf(a)+f(b)M[(ca)+(bc)]f(a)+f(b)M(ba) \begin{array}{ll} \because & f(x)\text{在}(a,b)\text{内至少有一个零点} \\ & \text{设}x=c \quad (a<c<b)\text{时,有}f(c) = 0 \\ \therefore & \exists\ \xi_{1}\in(a,c),\ \xi_{2}\in(c,b) \\ & f'(\xi_{1}) = \frac{f(c)-f(a)}{c-a} = \frac{-f(a)}{c-a} \\ & f'(\xi_{2}) = \frac{f(b)-f(c)}{b-c} = \frac{f(b)}{b-c} \\ \because & \vert f'(x)\vert \le M \\ \therefore & \vert f'(\xi_{1})\vert = \frac{\vert f(a)\vert}{c-a} \le M \\ & \vert f'(\xi_{2})\vert = \frac{\vert f(b)\vert}{b-c} \le M \\ \therefore & \vert f(a)\vert +\vert f(b)\vert \le M[(c-a)+(b-c)] \\ & \vert f(a)\vert +\vert f(b)\vert \le M(b-a) \\ \end{array}

results matching ""

    No results matching ""