Note f′(x0)=limΔx→0ΔyΔx=limx→x0f(x)−f(x0)x−x0\displaystyle{f'(x_{0})=\lim_{\Delta x\to 0}\frac{\Delta y}{\Delta x}=\lim_{x\to x_{0}}\frac{f(x)-f(x_{0})}{x-x_{0}}}f′(x0)=Δx→0limΔxΔy=x→x0limx−x0f(x)−f(x0) 导数存在与左导数,右导数 左导数 f−′(x0)=limΔx→0−ΔyΔx=limx→x0−f(x)−f(x0)x−x0\displaystyle{f'_{-}(x_{0})=\lim_{\Delta x\to 0^{-}}\frac{\Delta y}{\Delta x}=\lim_{x\to x_{0}^{-}}\frac{f(x)-f(x_{0})}{x-x_{0}}}f−′(x0)=Δx→0−limΔxΔy=x→x0−limx−x0f(x)−f(x0) 右导数 f+′(x0)=limΔx→0+ΔyΔx=limx→x0+f(x)−f(x0)x−x0\displaystyle{f'_{+}(x_{0})=\lim_{\Delta x\to 0^{+}}\frac{\Delta y}{\Delta x}=\lim_{x\to x_{0}^{+}}\frac{f(x)-f(x_{0})}{x-x_{0}}}f+′(x0)=Δx→0+limΔxΔy=x→x0+limx−x0f(x)−f(x0) f′(a) ∃⇔∃f−′(a),f+′(a) and f−′(a)=f+′(a)f'(a)\ \exists \Leftrightarrow \exists f'_{-}(a),f'_{+}(a) \text{ and } f'_{-}(a)=f'_{+}(a)f′(a) ∃⇔∃f−′(a),f+′(a) and f−′(a)=f+′(a) f(x)f(x)f(x) 在 x=ax=ax=a 处可导 ⇍⇒\nLeftarrow\Rightarrow⇍⇒ f(x)f(x)f(x) 在 x=ax=ax=a 处连续 Proof ⇒\Rightarrow⇒ : ∃ f′(a)⇒∃ limx→af(x)−f(a)x−a⇒limx→af(x)−f(a)=0⇒limx→af(x)=f(x)\begin{split}&\exists\ f'(a)\Rightarrow \exists\ \lim_{x\to a}\frac{f(x)-f(a)}{x-a}\Rightarrow\lim_{x\to a}f(x)-f(a)=0\\ &\Rightarrow\lim_{x\to a}f(x) = f(x)\end{split} ∃ f′(a)⇒∃ x→alimx−af(x)−f(a)⇒x→alimf(x)−f(a)=0⇒x→alimf(x)=f(x) ⇍\nLeftarrow⇍ (Example) f(x)=2x+∣x∣f(x) = 2x+\vert x\vertf(x)=2x+∣x∣ limx→0f(x)=f(0) but f−′(0)≠f+′(0)\lim_{x\to 0}f(x) =f(0)\text{ but } f'_{-}(0)\neq f'_{+}(0)x→0limf(x)=f(0) but f−′(0)=f+′(0) f(x)f(x)f(x)连续,若limx→af(x)−bx−a=A ⇒f(a)=b,f′(a)=A\displaystyle{\lim_{x\to a}\frac{f(x)-b}{x-a}}=A \ \Rightarrow f(a)=b, f'(a)=Ax→alimx−af(x)−b=A ⇒f(a)=b,f′(a)=A
Note
Proof ⇒\Rightarrow⇒ : ∃ f′(a)⇒∃ limx→af(x)−f(a)x−a⇒limx→af(x)−f(a)=0⇒limx→af(x)=f(x)\begin{split}&\exists\ f'(a)\Rightarrow \exists\ \lim_{x\to a}\frac{f(x)-f(a)}{x-a}\Rightarrow\lim_{x\to a}f(x)-f(a)=0\\ &\Rightarrow\lim_{x\to a}f(x) = f(x)\end{split} ∃ f′(a)⇒∃ x→alimx−af(x)−f(a)⇒x→alimf(x)−f(a)=0⇒x→alimf(x)=f(x) ⇍\nLeftarrow⇍ (Example) f(x)=2x+∣x∣f(x) = 2x+\vert x\vertf(x)=2x+∣x∣ limx→0f(x)=f(0) but f−′(0)≠f+′(0)\lim_{x\to 0}f(x) =f(0)\text{ but } f'_{-}(0)\neq f'_{+}(0)x→0limf(x)=f(0) but f−′(0)=f+′(0)
Proof
Note f(x)在x=x0可导⇔其在x=x0处可微f(x)\text{在}x=x_{0}\text{可导}\Leftrightarrow \text{其在}x=x_{0}\text{处可微}f(x)在x=x0可导⇔其在x=x0处可微 Proof ⇒\Rightarrow⇒ limΔx→0ΔyΔx=f′(x0)⇒ΔyΔx=f′(x0)+α (limΔx→0α=0)⇒ΔyΔx=f′(x0)+α⇒Δy=f′(x0)+αΔx=f′(x0)+o(Δx)\begin{split}&\lim_{\Delta x\to 0} \frac{\Delta y}{\Delta x} = f'(x_{0})\\\Rightarrow &\frac{\Delta y}{\Delta x} = f'(x_{0})+\alpha\ (\lim_{\Delta x\to 0}\alpha=0)\\\Rightarrow& \frac{\Delta y}{\Delta x} = f'(x_{0})+\alpha\\\Rightarrow&\Delta y=f'(x_0) +\alpha\Delta x = f'(x_{0})+o(\Delta x)\end{split}⇒⇒⇒Δx→0limΔxΔy=f′(x0)ΔxΔy=f′(x0)+α (Δx→0limα=0)ΔxΔy=f′(x0)+αΔy=f′(x0)+αΔx=f′(x0)+o(Δx) ⇐\Leftarrow⇐ Δy=AΔx+o(Δx)⇒ΔyΔx=A+o(Δx)Δx⇒limΔx→0ΔyΔx=A\begin{split}&\Delta y=A\Delta x + o(\Delta x)\\\Rightarrow & \frac{\Delta y}{\Delta x} = A +\frac{o(\Delta x)}{\Delta x}\\\Rightarrow &\lim_{\Delta x\to 0}\frac{\Delta y}{\Delta x} = A\end{split}⇒⇒Δy=AΔx+o(Δx)ΔxΔy=A+Δxo(Δx)Δx→0limΔxΔy=A 若Δy=AΔx+o(Δx)⇒A=f′(x0)\Delta y= A\Delta x+o(\Delta x)\Rightarrow A=f'(x_{0})Δy=AΔx+o(Δx)⇒A=f′(x0) y=f(x)y=f(x)y=f(x) 处处可导:dy=df(x)=f′(x)⋅dxdy=df(x)=f'(x)\cdot dxdy=df(x)=f′(x)⋅dx,如 d(x3)=3x2⋅dxd(x^{3})=3x^{2}\cdot dxd(x3)=3x2⋅dx
Proof ⇒\Rightarrow⇒ limΔx→0ΔyΔx=f′(x0)⇒ΔyΔx=f′(x0)+α (limΔx→0α=0)⇒ΔyΔx=f′(x0)+α⇒Δy=f′(x0)+αΔx=f′(x0)+o(Δx)\begin{split}&\lim_{\Delta x\to 0} \frac{\Delta y}{\Delta x} = f'(x_{0})\\\Rightarrow &\frac{\Delta y}{\Delta x} = f'(x_{0})+\alpha\ (\lim_{\Delta x\to 0}\alpha=0)\\\Rightarrow& \frac{\Delta y}{\Delta x} = f'(x_{0})+\alpha\\\Rightarrow&\Delta y=f'(x_0) +\alpha\Delta x = f'(x_{0})+o(\Delta x)\end{split}⇒⇒⇒Δx→0limΔxΔy=f′(x0)ΔxΔy=f′(x0)+α (Δx→0limα=0)ΔxΔy=f′(x0)+αΔy=f′(x0)+αΔx=f′(x0)+o(Δx) ⇐\Leftarrow⇐ Δy=AΔx+o(Δx)⇒ΔyΔx=A+o(Δx)Δx⇒limΔx→0ΔyΔx=A\begin{split}&\Delta y=A\Delta x + o(\Delta x)\\\Rightarrow & \frac{\Delta y}{\Delta x} = A +\frac{o(\Delta x)}{\Delta x}\\\Rightarrow &\lim_{\Delta x\to 0}\frac{\Delta y}{\Delta x} = A\end{split}⇒⇒Δy=AΔx+o(Δx)ΔxΔy=A+Δxo(Δx)Δx→0limΔxΔy=A