Section01_定义

导数定义

  • {y=f(x)(xD),x0D,x0+ΔxD,Δy=f(x0+Δx)f(x0)=f(x)f(x0)\begin{cases}y=f(x)(x\in \mathbb{D}),\\ x_{0}\in \mathbb{D}, x_{0}+\Delta x\in \mathbb{D},\\\Delta y = f(x_{0}+\Delta x)-f(x_{0})=f(x)-f(x_{0})\end{cases} limΔx0ΔyΔx\displaystyle{\exists\ \lim_{\Delta x\to 0}\frac{\Delta y}{\Delta x}},称f(x)f(x)x=x0x=x_{0}处可导,该极限称为f(x)f(x)x=x0x=x_{0}处的导数,记为f(x0)f'(x_{0})dydxx=x0\left.\frac{dy}{dx}\right\vert_{x=x_{0}}

Note

  1. f(x0)=limΔx0ΔyΔx=limxx0f(x)f(x0)xx0\displaystyle{f'(x_{0})=\lim_{\Delta x\to 0}\frac{\Delta y}{\Delta x}=\lim_{x\to x_{0}}\frac{f(x)-f(x_{0})}{x-x_{0}}}
  2. 导数存在与左导数,右导数
    1. 左导数 f(x0)=limΔx0ΔyΔx=limxx0f(x)f(x0)xx0\displaystyle{f'_{-}(x_{0})=\lim_{\Delta x\to 0^{-}}\frac{\Delta y}{\Delta x}=\lim_{x\to x_{0}^{-}}\frac{f(x)-f(x_{0})}{x-x_{0}}}
    2. 右导数 f+(x0)=limΔx0+ΔyΔx=limxx0+f(x)f(x0)xx0\displaystyle{f'_{+}(x_{0})=\lim_{\Delta x\to 0^{+}}\frac{\Delta y}{\Delta x}=\lim_{x\to x_{0}^{+}}\frac{f(x)-f(x_{0})}{x-x_{0}}}
    3. f(a) f(a),f+(a) and f(a)=f+(a)f'(a)\ \exists \Leftrightarrow \exists f'_{-}(a),f'_{+}(a) \text{ and } f'_{-}(a)=f'_{+}(a)
  3. f(x)f(x)x=ax=a 处可导 \nLeftarrow\Rightarrow f(x)f(x)x=ax=a 处连续

    Proof

    • \Rightarrow :  f(a) limxaf(x)f(a)xalimxaf(x)f(a)=0limxaf(x)=f(x)\begin{split}&\exists\ f'(a)\Rightarrow \exists\ \lim_{x\to a}\frac{f(x)-f(a)}{x-a}\Rightarrow\lim_{x\to a}f(x)-f(a)=0\\ &\Rightarrow\lim_{x\to a}f(x) = f(x)\end{split}
    • \nLeftarrow (Example) f(x)=2x+xf(x) = 2x+\vert x\vert limx0f(x)=f(0) but f(0)f+(0)\lim_{x\to 0}f(x) =f(0)\text{ but } f'_{-}(0)\neq f'_{+}(0)
  4. f(x)f(x)连续,若limxaf(x)bxa=A f(a)=b,f(a)=A\displaystyle{\lim_{x\to a}\frac{f(x)-b}{x-a}}=A \ \Rightarrow f(a)=b, f'(a)=A

相关题目

  • 例1 f(x)=lnx\displaystyle{f(x)=\vert \ln x\vert}f(1)f'(1)
  • f(1)=limx1f(x)f(1)x1=limx1lnxx1=limx1ln[1+(x1)]x1=1f+(1)=limx1+f(x)f(1)x1=limx1+lnxx1=limx1+ln[1+(x1)]x1=1f(1)f(1) \begin{split} & f'_{-}(1) = \lim_{x\to 1^{-}}\frac{f(x)-f(1)}{x-1} = \lim_{x\to 1^{-}}\frac{- \ln x}{x-1} = \lim_{x\to 1^{-}} -\frac{\ln[1+(x-1)]}{x-1} = -1 \\ & f'_{+}(1) = \lim_{x\to 1^{+}}\frac{f(x)-f(1)}{x-1} = \lim_{x\to 1^{+}}\frac{\ln x}{x-1} = \lim_{x\to 1^{+}} \frac{\ln[1+(x-1)]}{x-1} = 1\neq f'_{-}(1) \\ & \Rightarrow \nexists f'(1) \end{split}
  • 例2 f(x)={x21x1+21x,x00,x=0\displaystyle{f(x)=\begin{cases}\frac{x\cdot 2^{\frac{1}{x}}}{1+2^{\frac{1}{x}}},& x\neq 0\\0,&x=0\end{cases}}f(0)f'(0)
  • f(0)=limx0f(x)f(0)x0=limx021x1+21x=0f+(0)=limx0+f(x)f(0)x0=limx0+21x1+21x=1  f(0) \begin{split} & f'_{-}(0) = \lim_{x\to 0^{-}}\frac{f(x)-f(0)}{x-0} = \lim_{x\to 0^{-}}\frac{2^{\frac{1}{x}}}{1+2^{\frac{1}{x}}} = 0 \\ & f'_{+}(0) = \lim_{x\to 0^{+}}\frac{f(x)-f(0)}{x-0} = \lim_{x\to 0^{+}}\frac{2^{\frac{1}{x}}}{1+2^{\frac{1}{x}}} = 1 \\ & \Rightarrow\ \nexists\ f'(0) \end{split}

可微

定义

  • {y=f(x)xDΔy=f(x0+Δx)f(x0)x0D\displaystyle{\begin{cases}y=f(x)&x\in \mathbb{D} \\\Delta y = f(x_{0}+\Delta x)-f(x_{0})&x_{0}\in \mathbb{D}\end{cases}}Δy=AΔx+o(Δx)\Delta y=A\Delta x + o(\Delta x)f(x)f(x)x=0x=0处可微,AΔxA\Delta x 称为 f(x)f(x)x=x0x=x_{0}处的微分,记为 dyx=x0=AΔx=Adxd_{y}|_{x=x_{0}} = A\Delta x=Adx

Note

  1. f(x)x=x0可导其在x=x0处可微f(x)\text{在}x=x_{0}\text{可导}\Leftrightarrow \text{其在}x=x_{0}\text{处可微}

    Proof \Rightarrow limΔx0ΔyΔx=f(x0)ΔyΔx=f(x0)+α (limΔx0α=0)ΔyΔx=f(x0)+αΔy=f(x0)+αΔx=f(x0)+o(Δx)\begin{split}&\lim_{\Delta x\to 0} \frac{\Delta y}{\Delta x} = f'(x_{0})\\\Rightarrow &\frac{\Delta y}{\Delta x} = f'(x_{0})+\alpha\ (\lim_{\Delta x\to 0}\alpha=0)\\\Rightarrow& \frac{\Delta y}{\Delta x} = f'(x_{0})+\alpha\\\Rightarrow&\Delta y=f'(x_0) +\alpha\Delta x = f'(x_{0})+o(\Delta x)\end{split} \Leftarrow Δy=AΔx+o(Δx)ΔyΔx=A+o(Δx)ΔxlimΔx0ΔyΔx=A\begin{split}&\Delta y=A\Delta x + o(\Delta x)\\\Rightarrow & \frac{\Delta y}{\Delta x} = A +\frac{o(\Delta x)}{\Delta x}\\\Rightarrow &\lim_{\Delta x\to 0}\frac{\Delta y}{\Delta x} = A\end{split}

  2. Δy=AΔx+o(Δx)A=f(x0)\Delta y= A\Delta x+o(\Delta x)\Rightarrow A=f'(x_{0})
  3. y=f(x)y=f(x) 处处可导:dy=df(x)=f(x)dxdy=df(x)=f'(x)\cdot dx,如 d(x3)=3x2dxd(x^{3})=3x^{2}\cdot dx

results matching ""

    No results matching ""