Section00_预备知识

  1. 极值点 y=f(x) (xD), x0Dy=f(x)\ (x\in \mathbb{D}),\ x_{0}\in \mathbb{D}
    1.  δ>0\exists\ \delta>0,当 0<xx0<δ0<\vert x-x_{0}\vert <\delta 时,f(x)<f(x0)f(x)<f(x_{0})x0x_{0}为极大值点,其对应的函数值f(x0)f(x_{0})为极大值
    2.  δ>0\exists\ \delta>0,当 0<xx0<δ0<\vert x-x_{0}\vert <\delta 时,f(x)>f(x0)f(x)>f(x_{0})x0x_{0}为极小值点,其对应的函数值f(x0)f(x_{0})为极小值
  2. f(x)={>0<0=0f'(x) = \begin{cases}>0 \\<0 \\ =0\\\nexists\end{cases}
    1. f(a)>0f'(a)>0f(a)=limxaf(x)f(a)xa>0δ>0, When 0<xa<δ, f(x)f(a)xa>0\displaystyle{f'(a) = \lim_{x\to a}\frac{f(x)-f(a)}{x-a}>0\Rightarrow \exists \delta>0,\ \text{When } 0<\vert x-a\vert<\delta,\ \frac{f(x)-f(a)}{x-a}>0} {f(x)>f(a),x(a,a+δ)f(x)<f(a),x(aδ,a)\Rightarrow \displaystyle{\begin{cases}f(x) >f(a) , & x\in(a,a+\delta)\\ f(x) <f(a), & x\in(a-\delta,a) \end{cases}}
    2. f(a)<0f'(a)<0f(a)=limxaf(x)f(a)xa<0δ<0, When 0<xa<δ, f(x)f(a)xa<0\displaystyle{f'(a) = \lim_{x\to a}\frac{f(x)-f(a)}{x-a}<0\Rightarrow \exists \delta<0,\ \text{When } 0<\vert x-a\vert<\delta,\ \frac{f(x)-f(a)}{x-a}<0} {f(x)<f(a),x(a,a+δ)f(x)>f(a),x(aδ,a)\Rightarrow \displaystyle{\begin{cases}f(x) <f(a) , & x\in(a,a+\delta)\\ f(x) >f(a), & x\in(a-\delta,a) \end{cases}}

结论

  1. f(x)f(x)x=ax=a 处取极值 {f(a)=0 f(a)\nLeftarrow\Rightarrow\displaystyle{\begin{cases}f'(a)=0\\\nexists\ f'(a)\end{cases}}
  2. f(x)f(x) 可导且在 x=ax=a 处取得极值 f(a)=0\nLeftarrow\Rightarrow f'(a)=0
  3. f+(a)>0右大f_{+}(a)>0 \Rightarrow \text{右大} x1>a, f(x1)>f(a)\exists\ x_{1}>a,\ f(x_{1})>f(a)

    f+(a)<0右小f'_{+}(a)<0 \Rightarrow \text{右小} x1>a, f(x1)>f(a)\exists\ x_{1}>a,\ f(x_{1})>f(a)

results matching ""

    No results matching ""