结论 f(x)f(x)f(x) 在 x=ax=ax=a 处取极值 ⇍⇒{f′(a)=0∄ f′(a)\nLeftarrow\Rightarrow\displaystyle{\begin{cases}f'(a)=0\\\nexists\ f'(a)\end{cases}}⇍⇒{f′(a)=0∄ f′(a) f(x)f(x)f(x) 可导且在 x=ax=ax=a 处取得极值 ⇍⇒f′(a)=0\nLeftarrow\Rightarrow f'(a)=0⇍⇒f′(a)=0 f+(a)>0⇒右大f_{+}(a)>0 \Rightarrow \text{右大}f+(a)>0⇒右大 即 ∃ x1>a, f(x1)>f(a)\exists\ x_{1}>a,\ f(x_{1})>f(a)∃ x1>a, f(x1)>f(a) f+′(a)<0⇒右小f'_{+}(a)<0 \Rightarrow \text{右小}f+′(a)<0⇒右小 即 ∃ x1>a, f(x1)>f(a)\exists\ x_{1}>a,\ f(x_{1})>f(a)∃ x1>a, f(x1)>f(a)
结论
f(x)f(x)f(x) 在 x=ax=ax=a 处取极值 ⇍⇒{f′(a)=0∄ f′(a)\nLeftarrow\Rightarrow\displaystyle{\begin{cases}f'(a)=0\\\nexists\ f'(a)\end{cases}}⇍⇒{f′(a)=0∄ f′(a) f(x)f(x)f(x) 可导且在 x=ax=ax=a 处取得极值 ⇍⇒f′(a)=0\nLeftarrow\Rightarrow f'(a)=0⇍⇒f′(a)=0 f+(a)>0⇒右大f_{+}(a)>0 \Rightarrow \text{右大}f+(a)>0⇒右大 即 ∃ x1>a, f(x1)>f(a)\exists\ x_{1}>a,\ f(x_{1})>f(a)∃ x1>a, f(x1)>f(a) f+′(a)<0⇒右小f'_{+}(a)<0 \Rightarrow \text{右小}f+′(a)<0⇒右小 即 ∃ x1>a, f(x1)>f(a)\exists\ x_{1}>a,\ f(x_{1})>f(a)∃ x1>a, f(x1)>f(a)
f+(a)>0⇒右大f_{+}(a)>0 \Rightarrow \text{右大}f+(a)>0⇒右大 即 ∃ x1>a, f(x1)>f(a)\exists\ x_{1}>a,\ f(x_{1})>f(a)∃ x1>a, f(x1)>f(a)
f+′(a)<0⇒右小f'_{+}(a)<0 \Rightarrow \text{右小}f+′(a)<0⇒右小 即 ∃ x1>a, f(x1)>f(a)\exists\ x_{1}>a,\ f(x_{1})>f(a)∃ x1>a, f(x1)>f(a)