Section01_基本概念

极限

  • 一元  ϵ>0, δ>0, when 0<xx0<δ, f(x)A<ϵ\displaystyle \forall\ \epsilon >0, \exists\ \delta>0,\ \text{when } 0<\vert x-x_{0}\vert <\delta,\ \vert f(x)-A\vert < \epsilon,记为limxx0f(x)=A\displaystyle \lim_{x\to x_{0}}f(x) = A
    •  limxxxf(x)f(x00)=f(x0+0)\displaystyle \exists\ \lim_{x\to x_{x}}f(x)\Leftrightarrow f(x_{0}-0) = f(x_{0}+0)
  • 二元 f(x,y)f(x,y)M0(x0,y0)M_{0}(x_{0},y_{0}) 的去心邻域内有定义  ϵ>0, δ>0,when 0<(xx0)2+(yy0)2<δ,f(x,y)A<ϵ\displaystyle \forall\ \epsilon>0,\exists\ \delta>0,\text{when } 0<\sqrt{(x-x_{0})^{2}+(y-y_{0})^{2}}<\delta,\vert f(x,y)-A\vert < \epsilon,记为 limxx0yy0f(x,y)=A\displaystyle \lim_{\substack{x\to x_{0}\\y\to y_{0}}} f(x,y) =A

    例题

  • limx0y21+xy1xyx\displaystyle \lim_{\substack{x\to 0\\ y \to 2}}\frac{\sqrt{1+xy}-\sqrt{1-xy}}{x} limx0y21+xy1xyx=limx0y2y1+xy1xyxy=2limx0y21+xy1xyxy=t=xy2limt01+t1tt=2limt011+t+1t2tt=2 \begin{split} & \lim_{\substack{x\to 0\\y\to 2}} \frac{\sqrt{1+xy}-\sqrt{1-xy}}{x} = \lim_{\substack{x\to 0\\y\to 2}} y \frac{\sqrt{1+xy}-\sqrt{1-xy}}{xy} \\ = & 2 \lim_{\substack{x\to 0\\ y\to 2}} \frac{\sqrt{1+xy}-\sqrt{1-xy}}{xy} \xlongequal{t=xy} 2\lim_{t\to 0} \frac{\sqrt{1+t}-\sqrt{1-t}}{t} \\ = & 2\lim_{t\to 0} \frac{1}{\sqrt{1+t}+\sqrt{1-t}} \cdot \frac{2t}{t} = 2 \end{split}
  • f(x,y)={xyx2+y2(x,y)(0,0)0(x,y)=(0,0)f(x,y)=\begin{cases}\displaystyle \frac{xy}{x^{2}+y^{2}}& (x,y)\ne (0,0)\\\displaystyle 0& (x,y) = (0,0)\end{cases}limx0y0f(x,y)\displaystyle \lim_{\substack{x\to 0\\ y\to 0}}f(x,y) limx0y=x=12limx0y=x=12limx0y0f(x,y)  \begin{array}{ll} \because & \displaystyle \lim_{\substack{x\to 0\\ y=x}} =\frac{1}{2} \ne \lim_{\substack{x\to 0 \\ y=-x}} = -\frac{1}{2} \\ \therefore & \displaystyle \lim_{\substack{x\to 0\\y\to0}}f(x,y)\ \nexists\\ \end{array}

连续

  • 一元limxx0f(x)=f(x0)f(x00)=f(x0+0)=f(x0)\displaystyle \lim_{x\to x_{0}} f(x) = f(x_{0})\Leftrightarrow f(x_{0}-0)=f(x_{0}+0)=f(x_{0}) 则称f(x)f(x)x=x0x=x_{0}处连续
  • 二元limxx0yy0f(x,y)=f(x0,y0)\displaystyle \lim_{\substack{x\to x_{0}\\y\to y_{0}}}f(x,y) = f(x_{0},y_{0}) 则称 f(x,y)f(x,y)(x0,y0)(x_{0},y_{0}) 处连续

偏导数

z=f(x,y)(x,y)D,M0(x0,y0)Dz=f(x,y)\quad (x,y)\in \mathbb{D},M_{0}(x_{0},y_{0})\in\mathbb{D}

增量

  1. Δzx\Delta z_{x} f(x,y)f(x,y)M0M_{0}处关于xx的偏增量 Δzx=f(x0+Δx,y0)f(x0,y0)=f(x,y0)f(x0,y0) \Delta z_{x} = f(x_{0}+\Delta x,y_{0}) - f(x_{0},y_{0}) = f(x, y_{0}) - f(x_{0},y_{0})
  2. Δzy\Delta z_{y} f(x,y)f(x,y)M0M_{0}处关于yy的偏增量 Δzy=f(x0,y0+Δy)f(x0,y0)=f(x0,y)f(x0,y0) \Delta z_{y} = f(x_{0},y_{0} + \Delta y) - f(x_{0},y_{0}) = f(x_{0}, y) - f(x_{0},y_{0})
  3. Δz\Delta z f(x,y)f(x,y)M0M_{0}处的全增量 Δz=f(x0+Δx,y0+Δy)f(x0,y0)=f(x,y)f(x0,y0) \Delta z = f(x_{0}+\Delta x,y_{0} + \Delta y) - f(x_{0},y_{0}) = f(x, y) - f(x_{0},y_{0})

偏导数

  1. limΔx0ΔzxΔx=limxx0f(x,y0)f(x0,y0)xx0 \displaystyle \lim_{\Delta x\to 0} \frac{\Delta z_{x}}{\Delta x} = \lim_{x\to x_{0}}\frac{f(x,y_{0})-f(x_{0},y_{0})}{x-x_{0}}\ \exists 则称 f(x,y)f(x,y)M0M_{0} 处关于 xx 可偏导,记为fx(x,y)zxM0\displaystyle f_{x}(x,y)\text{或}\left.\frac{\partial z}{\partial x}\right\vert_{M_{0}}
  2. limΔy0ΔzyΔy=limyy0f(x0,y)f(x0,y0)yy0 \displaystyle \lim_{\Delta y\to 0} \frac{\Delta z_{y}}{\Delta y} = \lim_{y\to y_{0}}\frac{f(x_{0},y)-f(x_{0},y_{0})}{y-y_{0}}\ \exists 则称 f(x,y)f(x,y)M0M_{0} 处关于 yy 可偏导,记为fy(x,y)zyM0\displaystyle f_{y}(x,y)\text{或}\left.\frac{\partial z}{\partial y}\right\vert_{M_{0}}

可(全)微

  • 一元 y=f(x),xD,x0Dy = f(x), x\in\mathbb{D}, x_{0}\in\mathbb{D},若 Δy=AΔx+o(Δx)\Delta y = A\Delta x + o(\Delta x) 则称 f(x)f(x)x0x_{0} 处可微,AΔx=Adxdyx=x0A\Delta x = Adx \triangleq dy\vert_{x=x_{0}}
    • 可导 <=> 可微
    • A=f(x0)A=f'(x_{0})
    • y=f(x)y=f(x) 可导,则 dy=df(x)=f(x)dxdy = df(x) = f'(x)\cdot dx
  • 二元 z=f(x,y),(x,y)D,M0(x0,y0)Dz=f(x,y), (x,y)\in\mathbb{D}, M_{0}(x_{0},y_{0})\in\mathbb{D},若 Δz=AΔx+BΔy+o(ρ)ρ=(xx0)2+(yy0)2\Delta z = A\Delta x+B\Delta y+o(\rho)\quad \rho = \sqrt{(x-x_{0})^{2}+(y-y_{0})^{2}} 则称 f(x,y)f(x,y)(x0,y0)(x_{0},y_{0}) 处可全微,AΔx+BΔy=Adx+BdydzM0A\Delta x + B\Delta y = Adx + Bdy \triangleq dz\vert_{M_{0}}z=f(x,y)z=f(x,y)M0M_{0} 处的全微分

results matching ""

    No results matching ""