Section03_多元函数微分学的应用

求极值

对于一元 y=f(x)y=f(x),求极值

  1. 找出 xDx\in \mathbb{D}
  2. 找出 f(x){=0f'(x)\begin{cases}=0\\\nexists\end{cases} 对应的 xx
  3. 判别法
    1. Th1
    2. Th2

定义

  • 对于z=f(x,y),(x,y)D,M0(x0,y0)Dz = f(x,y), (x,y)\in\mathbb{D}, M_{0}(x_{0},y_{0}) \in\mathbb{D},若  δ>0\exists\ \delta > 0, 但 0<(xx0)2+(yy0)2<δ0 < \sqrt{(x-x_{0})^{2} + (y-y_{0})^{2}}<\delta
    • f(x,y)<f(x0,y0)f(x,y) < f(x_{0},y_{0})(x0,y0)(x_{0},y_{0}) 为极大点,f(x0,y0)f(x_{0},y_{0}) 为极大值
    • f(x,y)>f(x0,y0)f(x,y) > f(x_{0},y_{0})(x0,y0)(x_{0},y_{0}) 为极小点,f(x0,y0)f(x_{0},y_{0}) 为极小值

极值问题

二元函数的无条件极值

z=f(x,y),(x,y)D(D为开区域)\color{#D0104C}{z=f(x,y),(x,y)\in\mathbb{D}\quad (\mathbb{D}\text{为开区域})}

步骤
  1. 求出 {zx=0zy=0\begin{cases}\displaystyle\frac{\partial z}{\partial x} = 0\\\displaystyle\frac{\partial z}{\partial y}=0\end{cases} 对应的 {x0,y0,\begin{cases}\displaystyle x_{0},\cdots\\ \displaystyle y_{0},\cdots\end{cases}
  2. (x0,y0)(x_{0},y_{0})f(x,y)f(x,y) 的一个驻点
    • A=2zx2(x0,y0)\displaystyle A = \left.\frac{\partial^{2}{z}}{\partial x^{2}}\right\vert_{(x_{0},y_{0})}
    • B=2zxy(x0,y0)\displaystyle B = \left.\frac{\partial^{2}{z}}{\partial x\partial y}\right\vert_{(x_{0},y_{0})}
    • C=2zy2(x0,y0)\displaystyle C = \left.\frac{\partial^{2}{z}}{\partial y^{2}}\right\vert_{(x_{0},y_{0})}
  3. 判断 ACB2{<0(x0,y0)不为极值点>0{A<0(x0,y0)为极大点A>0(x0,y0)为极小点 AC-B^{2} \begin{cases} < 0 \quad (x_{0},y_{0})\text{不为极值点} \\ > 0 \quad \begin{cases} A < 0 & (x_{0},y_{0}) \text{为极大点}\\ A > 0 & (x_{0},y_{0}) \text{为极小点}\\ \end{cases} \end{cases}
例题
  1. z=f(x,y)=x33x29x+y2+2y2z=f(x,y) =x^{3} - 3x^{2}-9x+y^{2}+2y - 2,求极值

{zx=3x26x9=0zy=2y+2=0{x=1,3y=1(1,1){A=2zx2=12B=2zxy=0C=2zy2=2ACB2<0,(1,1)不为极值点(3,1){A=2zx2=12B=2zxy=0C=2zy2=2ACB2>0,A>0(3,1)为极小值点极小值为f(3,1)=30 \begin{array}{ll} & \begin{cases} \displaystyle \frac{\partial{z}}{\partial{x}} = 3x^{2} - 6x - 9 = 0 \\ \displaystyle \frac{\partial{z}}{\partial{y}} = 2y + 2 = 0 \\ \end{cases} \Rightarrow \begin{cases} x = -1,3 \\ y = -1 \end{cases} \\ & \text{对}(-1,-1) \begin{cases} \displaystyle A = \frac{\partial^{2}{z}}{\partial{x^{2}}} = -12 \\ \displaystyle B = \frac{\partial^{2}{z}}{\partial{x}\partial{y}} = 0 \\ \displaystyle C = \frac{\partial^{2}{z}}{\partial{y^{2}}} = 2 \\ \end{cases}\\ \therefore & AC - B^{2} < 0, (-1,-1) \text{不为极值点} \\ & \text{对}(3,-1) \begin{cases} \displaystyle A = \frac{\partial^{2}{z}}{\partial{x^{2}}} = 12 \\ \displaystyle B = \frac{\partial^{2}{z}}{\partial{x}\partial{y}} = 0 \\ \displaystyle C = \frac{\partial^{2}{z}}{\partial{y^{2}}} = 2 \\ \end{cases}\\ \therefore & AC - B^{2} > 0, A > 0 (3,-1) \text{为极小值点} \\ & \text{极小值为} f(3,-1) = -30 \end{array}

多元函数条件极值-Lagrange乘数法

步骤
  1. Case 1 z=f(x,y)s.t. ϕ(x,y)=0z= f(x,y)\quad \text{s.t.}\ \phi(x,y) = 0
    1. F=f(x,y)+λϕ(x,y)=0F=f(x,y)+\lambda \phi(x,y) = 0
    2. {Fx=fx+λϕx=0Fy=fy+λϕy=0Fλ=ϕ(x,y)=0\begin{cases}F_{x} = f_{x} + \lambda \phi_{x} = 0\\F_{y} = f_{y} + \lambda\phi_{y} = 0\\F_{\lambda} = \phi(x,y) = 0\end{cases} ==> {x=?y=?\begin{cases}x=?\\y=?\end{cases}
    3. 一一代入进行比较
例题
  1. u=u(x,y)u=u(x,y) 满足:a. du=2xdx2ydydu=2xdx-2ydy;b. u(0,0)=2u(0,0) = 2
    1. u(x,y)u(x,y) Method 1du=2xdx2ydydu=d(x2y2)u(x,y)=x2y2+Cu(0,0)=2u(x,y)=x2y2+2Method 2du=2xdx2ydyzx=2xu=x2ϕ(y)zy=ϕ(y)=2yϕ(y)=y2+Cu(x,y)=x2y2+Cu(0,0)=2u(x,y)=x2y2+2 \begin{array}{ll} & \text{Method 1} \\ \because & du = 2xdx- 2y dy \\ \therefore & du = d(x^{2} - y^{2}) \\ \therefore & u(x,y) = x^{2} - y^{2} + C \\ \because & u(0,0) = 2 \\ \therefore & u(x,y) = x^{2}-y^{2}+2 \\\\ & \color{#D0104C}{\text{Method 2}} \\ \because & du = 2xdx - 2y dy \\ \therefore & \frac{\partial{z}}{\partial{x}} = 2x \\ \therefore & u = x^{2} - \phi(y) \\ \because & \frac{\partial{z}}{\partial{y}} = \phi'(y) = -2y \\ \therefore & \phi(y) = y^{2} + C \\ \therefore & u(x,y) = x^{2} - y^{2} + C\\ \because & u(0,0) = 2 \\ \therefore & u(x,y) = x^{2}-y^{2}+2 \\ \end{array}
    2. u(x,y)u(x,y)x2+4y24x^{2} + 4y^{2}\le 4 上的 m,Mm,M 对于x2+4y2<4{ux=2x=0uy=2y=0{x=0y=0u(0,0)=2对于x2+4y2=4F=x2y2+2+λ(x2+4y24){Fx=2x+2λx=2x(1+λ)=0Fy=2y+8λy=2y(4λ1)=0Fλ=x2+4y24=0{λ=1y=0x=±2{λ=14x=0y=±1u(±2,0)=6u(0,±1)=1u(0,0)=2m=u(0,±1)=1,M=u(±2,0)=6 \begin{array}{ll} & \text{对于} x^{2} + 4y^{2} < 4 \\ \because & \begin{cases} \frac{\partial{u}}{\partial{x}} = 2x = 0 \\ \frac{\partial{u}}{\partial{y}} = 2y = 0 \\ \end{cases} \Rightarrow \begin{cases} x=0 \\ y=0 \end{cases} \\ \therefore & u(0,0) = 2 \\ & \text{对于} x^{2} + 4y^{2} = 4 \\ \therefore & F = x^{2} - y^{2} +2 + \lambda(x^{2} + 4y^{2} - 4) \\ & \begin{cases} F_{x} = 2x +2\lambda x = 2x(1+\lambda) = 0 \\ F_{y} = -2y +8\lambda y = 2y(4\lambda-1) = 0\\ F_{\lambda} = x^{2} + 4y^{2} -4 =0 \end{cases} \\ \therefore & \begin{cases} \lambda = -1 \\ y=0 \\ x = \pm 2 \end{cases} \begin{cases} \lambda = \frac{1}{4} \\ x=0 \\ y = \pm 1 \end{cases} \\ \because & u(\pm 2, 0) = 6 \\ & u(0, \pm 1) = 1 \\ \because & u(0,0) = 2 \\ \therefore & m = u(0,\pm 1) = 1, \\& M = u(\pm 2,0)=6 \\ \end{array}

results matching ""

    No results matching ""