Section01_概念与性质

背景

  1. 已知速度与时间的关系v=v(t),t[a,b]v=v(t), t\in[a,b],求路程SS Step 01a=t0<t1<t2<<tn=b[a,b]=[t0,t1][t1,t2][tn1,tn]Δti=t1ti1i{1,2,,n}Step 02 ξ[ti1,ti]i{1,2,,n}ΔSif(ξ)ΔtiSi=1nf(ξi)ΔtiStep 03λ=max{Δt1,Δt2,,Δtn}S=limλ0i=1nv(ξi)Δti \begin{array}{lc} \text{Step 01}\\ &a= t_{0} <t_{1}<t_{2}<\cdots < t_{n} = b\\ &[a,b]= [t_{0},t_{1}]\cup[t_{1},t_{2}]\cup\cdots\cup[t_{n-1},t_{n}]\\ &\Delta t_{i} = t_{1}-t_{i-1}\quad i\in\{1,2,\cdots,n\}\\\\ \text{Step 02}\\ &\forall\ \xi\in[t_{i-1},t_{i}]\quad i\in\{1,2,\cdots,n\}\\ &\Delta S_{i} \approx f(\xi)\Delta t_{i} \\ &\displaystyle S\approx \sum_{i=1}^{n}f(\xi_{i})\Delta t_{i} \\\\ \text{Step 03}\\ &\lambda = \max\{\Delta t_{1},\Delta t_{2},\cdots, \Delta t_{n}\} \\ &\displaystyle S = \lim_{\lambda\to 0}\sum_{i=1}^{n} v(\xi_{i})\Delta t_{i} \end{array}
  2. 已知y=f(x)0(x[a,b])y = f(x)\ge 0\quad(x\in[a,b]) f(x)f(x)x=a,x=bx=a,x=b以及xx轴围成图形的面积 Step 01a=x0<x1<x2<<xn=b[a,b]=[x0,x1][x1,x2][xn1,xn]Δxi=x1xi1i{1,2,,n}Step 02 ξ[xi1,xi]i{1,2,,n}ΔAif(ξ)ΔxiAi=1nf(ξi)ΔxiStep 03λ=max{Δx1,Δx2,,Δxn}A=limλ0i=1nv(ξi)Δxi \begin{array}{lc} \text{Step 01}\\ &a= x_{0} <x_{1}<x_{2}<\cdots < x_{n} = b\\ &[a,b]= [x_{0},x_{1}]\cup[x_{1},x_{2}]\cup\cdots\cup[x_{n-1},x_{n}]\\ &\Delta x_{i} = x_{1}-x_{i-1}\quad i\in\{1,2,\cdots,n\}\\\\ \text{Step 02}\\ &\forall\ \xi\in[x_{i-1},x_{i}]\quad i\in\{1,2,\cdots,n\}\\ &\Delta A_{i} \approx f(\xi)\Delta x_{i} \\ &\displaystyle A\approx \sum_{i=1}^{n}f(\xi_{i})\Delta x_{i} \\\\ \text{Step 03}\\ &\lambda = \max\{\Delta x_{1},\Delta x_{2},\cdots, \Delta x_{n}\} \\ &\displaystyle A = \lim_{\lambda\to 0}\sum_{i=1}^{n} v(\xi_{i})\Delta x_{i} \end{array}

    定义

  3. f(x)f(x)[a,b][a,b] 上有界 Step 01a=x0<x1<x2<<xn=b[a,b]=[x0,x1][x1,x2][xn1,xn]Δxi=x1xi1i{1,2,,n}Step 02 ξi[xi1,xi]i{1,2,,n}i=1nf(ξi)ΔxiStep 03λ=max{x1,x2,,xn} \begin{array}{lc} \text{Step 01}\\ &a= x_{0} <x_{1}<x_{2}<\cdots < x_{n} = b\\ &[a,b]= [x_{0},x_{1}]\cup[x_{1},x_{2}]\cup\cdots\cup[x_{n-1},x_{n}]\\ &\Delta x_{i} = x_{1}-x_{i-1}\quad i\in\{1,2,\cdots,n\}\\\\ \text{Step 02}\\ &\exists\ \xi_{i}\in[x_{i-1},x_{i}]\quad i\in\{1,2,\cdots,n\}\text{作}\\ & \displaystyle \sum_{i=1}^{n} f(\xi_{i})\Delta x_{i}\\\\ \text{Step 03}\\ &\lambda = \max\{x_{1},x_{2},\cdots, x_{n}\} \\ \end{array}
    • limλ0i=1nf(ξi)Δxi \displaystyle \lim_{\lambda\to 0}\sum_{i=1}^{n}f(\xi_{i})\Delta x_{i}\ \exists,称 f(x)f(x)[a,b][a,b] 上可积,极限值称为 f(x)f(x)[a,b][a,b] 上的定积分,记为 abf(x)dx\displaystyle \int_{a}^{b} f(x)\cdot dx,即 abf(x)dx=Δlimλ0i=1nf(ξi)Δxi\displaystyle \int_{a}^{b} f(x)\cdot dx \overset{\Delta}{=} \lim_{\lambda\to 0}\sum_{i=1}^{n}f(\xi_{i})\Delta x_{i}

      Notes

      1. aaf(x)dx=0;abf(x)dx=baf(x)dx\displaystyle \int_{a}^{a}f(x)\cdot dx = 0 ;\int_{a}^{b} f(x)\cdot dx = -\int_{b}^{a}f(x)\cdot dx
      2. f(x)C[a,b]f(x)\in C[a,b] 或在 [a,b][a,b] 上除有限个第一类间断点外处处连续时,f(x)f(x)[a,b][a,b] 上可积
      3. limλ0i=1nf(ξi)dx\displaystyle \lim_{\lambda \to 0}\sum_{i=1}^{n}f(\xi_{i})\cdot dx{[a,b]的分法ξi的取法\begin{cases}\displaystyle[a,b]\text{的分法} \\ \displaystyle \xi_{i}\text{的取法}\end{cases} 无关
      4. f(x)f(x)[a,b][a,b] 上有界,不一定可积

        Proof f(x)={1,xQ1,xRQf(x)[a,b]上有界,对于limλ0i=1nf(ξi)Δxi ξiQ,limλ0i=1nf(ξi)Δxi=limλ0i=1nΔxi=ba ξiRQ,limλ0i=1nf(ξi)Δxi=limλ0i=1nΔxi=ablimλ0i=1nf(ξi)Δxi f(x)[a,b]上不可积\begin{array}{ll} & f(x) = \begin{cases} 1, x\in \mathbb{Q} \\ -1, x\in \mathbb{R}\setminus \mathbb{Q}\\ \end{cases} \\ & \displaystyle f(x) \text{在} [a,b] \text{上有界,对于} \lim_{\lambda\to 0}\sum_{i=1}^{n}f(\xi_{i})\cdot \Delta x_{i}\\ \because &\displaystyle \forall\ \xi_{i}\in \mathbb{Q}, \lim_{\lambda\to 0}\sum_{i=1}^{n}f(\xi_{i})\Delta x_{i} = \lim_{\lambda\to 0}\sum_{i=1}^{n}\Delta x_{i} = b-a \\ &\displaystyle \forall\ \xi_{i}\in \mathbb{R}\setminus \mathbb{Q}, \lim_{\lambda\to 0} \sum_{i=1}^{n}f(\xi_{i})\Delta x_{i} = -\lim_{\lambda\to0}\sum_{i=1}^{n}\Delta x_{i} = a-b \\ \therefore & \displaystyle \lim_{\lambda\to 0}\sum_{i=1}^{n}f(\xi_{i})\Delta x_{i}\ \nexists \Rightarrow f(x)\text{在}[a,b]\text{上不可积} \\\end{array}

      5. λ0n\lambda\to 0\nLeftarrow\Rightarrow n\to \infty
      6. f(x)f(x)[0,1][0,1] 上可积

        [0,1]=[0,1n][1n,2n][n1n,nn]Δx1=Δx2==Δxn=1nλ0nξ1=1n,ξ2=2n,,ξn=nni=1nf(ξi)Δxi=i=1n1nf(in)01f(x)dx=limλ0i=1nf(ξi)Δxi=limni=1n1nf(in)\begin{array}{ll} & [0,1] = [0,\frac{1}{n}] \cup [\frac{1}{n}, \frac{2}{n}] \cup \cdots \cup [\frac{n-1}{n}, \frac{n}{n}]\\ & \Delta x_{1} = \Delta x_{2} = \cdots = \Delta x_{n} = \frac{1}{n}\\ \therefore & \lambda \to 0 \Leftrightarrow n\to \infty \\ \therefore & \xi_{1} = \frac{1}{n}, \xi_{2} = \frac{2}{n}, \cdots, \xi_{n} = \frac{n}{n} \\ \therefore & \displaystyle \sum_{i=1}^{n} f(\xi_{i})\Delta x_{i} = \sum_{i=1}^{n}\frac{1}{n}\cdot f\bigg(\frac{i}{n}\bigg) \\ \therefore & \displaystyle \int_{0}^{1}f(x)\cdot dx = \lim_{\lambda \to 0} \sum_{i=1}^{n} f(\xi_{i})\Delta x_{i}\\ & \displaystyle = \lim_{n\to \infty} \sum_{i=1}^{n}\frac{1}{n}\cdot f\bigg(\frac{i}{n}\bigg) \end{array}

一般性质

  1. ab[f(x)+g(x)]dx=abf(x)dx+abg(x)dx\displaystyle \int_{a}^{b}[f(x) + g(x)]\cdot dx = \int_{a}^{b}f(x)\cdot dx + \int_{a}^{b}g(x)\cdot dx
    1. abkf(x)dx=kabf(x)dx\displaystyle \int_{a}^{b}kf(x)\cdot dx = k \int_{a}^{b}f(x)\cdot dx
    2. abf(x)dx=acf(x)dx+cbf(x)dx\displaystyle \int_{a}^{b}f(x)\cdot dx = \int_{a}^{c}f(x)\cdot dx + \int_{c}^{b}f(x)\cdot dx
    3. ab1dx=ba\displaystyle \int_{a}^{b}1\cdot dx = b-a
    4. 不等式
    5. f(x)0(axb)abf(x)dx0\displaystyle f(x)\ge 0\quad (a\le x\le b)\Rightarrow \int_{a}^{b}f(x)\cdot dx\ge 0
    6. f(x)g(x)(axb)abf(x)dxabg(x)dx\displaystyle f(x)\ge g(x)\quad (a\le x\le b)\Rightarrow \int_{a}^{b}f(x)\cdot dx \ge \int_{a}^{b}g(x)\cdot dx
    7. 重点f(x),f(x)f(x), \vert f(x) \vert[a,b][a,b]上可积,则 abf(x)dxabf(x)dx \displaystyle \color{#D0104C}{ \left\vert \int_{a}^{b} f(x)\cdot dx \right\vert \le \int_{a}^{b} \vert f(x) \vert\cdot dx}
    8. 重点 (积分中值定理) 设 f(x)C[a,b]f(x)\in C[a,b] ξ[a,b]\exists\ \xi\in[a,b],使得 abf(x)dx=f(ξ)(ba)\displaystyle \int_a^bf(x)\cdot dx = f(\xi)\cdot (b-a)

Proof f(x)C[a,b] m,M,mf(x)M(x[a,b])m(ba)abf(x)dxM(ba)m1baabf(x)dxM ξ[a,b],f(ξ)=1baabf(x)dx ξ[a,b],abf(x)dx=(ba)f(ξ)\begin{array}{ll} \because & f(x)\in C[a,b] \\ & \text{设}\exists\ m, M, m\le f(x)\le M \quad (x\in [a,b])\\ \therefore & \displaystyle m(b-a)\le \int_{a}^{b}f(x)\cdot dx \le M(b-a) \\ & \displaystyle m\le \frac{1}{b-a}\int_{a}^{b}f(x)\cdot dx \le M \\ \therefore &\displaystyle \exists\ \xi\in [a,b], f(\xi) = \frac{1}{b-a}\int_{a}^{b}f(x)\cdot dx \\ \therefore & \displaystyle \exists\ \xi\in[a,b], \int_{a}^{b}f(x)\cdot dx = (b-a)f(\xi) \\\end{array}

  1. 重点 (积分中值定理的推广) 设 f(x)C[a,b]f(x)\in C[a,b] ξ(a,b)\exists\ \xi\in(a,b),使得abf(x)dx=f(ξ)(ba)\displaystyle \int_{a}^{b}f(x)\cdot dx = f(\xi)\cdot (b-a)

Proof F(x)=axf(x)dxF(x)=f(x),F(a)=0,F(b)=abf(x)dx ξ(a,b),F(b)F(a)=(ba)F(ξ)abf(x)dx=(ba)f(ξ)\begin{array}{ll} & \displaystyle\text{令}F(x) = \int_{a}^{x} f(x) \cdot dx \\ & \displaystyle\text{则} F'(x) = f(x), F(a) = 0, F(b) = \int_{a}^{b}f(x)\cdot dx\\ \because & \exists\ \xi\in (a,b), F(b) - F(a) = (b-a)F'(\xi) \\ \therefore & \displaystyle \int_{a}^{b}f(x)\cdot dx = (b-a)f(\xi) \\\end{array}

例题

  • 例1 f(x)C[0,1]f(x)\in C[0,1],且 (0,1)(0,1) 内可导,f(0)=01f(x)dx\displaystyle f(0)=\int_{0}^{1} f(x)\cdot dx,证  ξ(0,1)\exists\ \xi\in(0,1),使得 f(ξ)=0f'(\xi) =0 f(x)C[a,b] c(0,1),f(c)(10)=01f(x)dx01f(x)dx=f(0)=f(c) ξ(0,c)(0,1),f(ξ)=0 \begin{array}{ll} \because & f(x)\in C[a,b] \\ \therefore & \displaystyle\exists\ c\in (0,1), f(c)(1-0) = \int_{0}^{1}f(x)\cdot dx \\ \because & \displaystyle \int_{0}^{1}f(x)\cdot dx= f(0) = f(c) \\ \therefore & \exists\ \xi\in(0,c)\subset(0,1), f'(\xi) = 0 \\ \end{array}

results matching ""

    No results matching ""