Proof
∵∴∴∴f(x)∈C[a,b]设∃ m,M,m≤f(x)≤M(x∈[a,b])m(b−a)≤∫abf(x)⋅dx≤M(b−a)m≤b−a1∫abf(x)⋅dx≤M∃ ξ∈[a,b],f(ξ)=b−a1∫abf(x)⋅dx∃ ξ∈[a,b],∫abf(x)⋅dx=(b−a)f(ξ)
Proof
∵∴令F(x)=∫axf(x)⋅dx则F′(x)=f(x),F(a)=0,F(b)=∫abf(x)⋅dx∃ ξ∈(a,b),F(b)−F(a)=(b−a)F′(ξ)∫abf(x)⋅dx=(b−a)f(ξ)