Section02_基本理论

积分基本定理

不定积分与定积分的不同

  1. f(x)dxf(t)dt\displaystyle \int f(x)\cdot dx \neq \int f(t) \cdot dt
  2. abf(x)dx=abf(t)dt=abf(u)du\displaystyle \int_{a}^{b} f(x) \cdot dx = \int_{a}^{b} f(t)\cdot dt = \int_{a}^{b} f(u)\cdot du

积分上限函数

  • 对于曲线L: y=f(x)x[a,b]\text{L: }y=f(x)\quad x\in[a,b] x[a,b]\forall\ x\in[a,b] Φ(x)axf(t)dt \Phi(x) \triangleq\int_{a}^{x}f(t)\cdot dt

Notes

  1. axf(x)dx\displaystyle \int_{a}^{x} f(x)\cdot dx 表达式中的 xx 和上限的 xx 不同
  2. axf(x,t)dt\displaystyle \int_{a}^{x}f(x,t)\cdot dt 表达式中的 xx 和上限的 xx 相同
  3. f(x)C[a,b]f(x)\in C[a,b],则 axf(t)dt\displaystyle \int_{a}^{x}f(t)\cdot dt 可导
  4. f(x)C[a,b]f(x)\in C[a,b],则 f(x)f(x) 存在原函数
  5. ddxaϕ(x)f(x)dx=f[ϕ(x)]ϕ(x)\displaystyle\frac{d}{dx}\int_{a}^{\phi(x)}f(x)\cdot dx = f[\phi(x)]\cdot \phi'(x)
  6. ddxϕ1(x)ϕ2(x)f(x)dx=f[ϕ2(x)]ϕ2(x)f[ϕ1(x)]ϕ1(x)\displaystyle \frac{d}{dx}\int_{\phi_{1}(x)}^{\phi_{2}(x)}f(x)\cdot dx = f[\phi_{2}(x)]\cdot \phi_{2}'(x) - f[\phi_{1}(x)]\cdot \phi_{1}'(x)

定理1

  • f(x)C[a,b]f(x)\in C[a,b] 或除去有限个第一类间断点外处处连续,Φ(x)=axf(t)dt\displaystyle \Phi(x) = \int_{a}^{x}f(t)\cdot dt,则 Φ(x)=f(x)\Phi'(x) = f(x)

Proof Φ(x)=axf(t)dtΔΦ=Φ(x+Δx)Φ(x)=ax+Δxf(t)dtaxf(t)dt=xx+Δxf(t)dtf(x)C[a,b]根据定积分中值定理 ζ(x,x+Δx),f(ζ)Δx=ΔΦlimΔx0f(ζ)=f(x)=limΔx0ΔΦΔx=Φ(x)Φ(x)=f(x)\begin{array}{ll} \because & \displaystyle \Phi(x) = \int_{a}^{x}f(t)\cdot dt \\ \therefore &\displaystyle \Delta \Phi = \Phi(x+\Delta x) - \Phi(x) = \int_{a}^{x+\Delta x}f(t)\cdot dt - \int_{a}^{x}f(t)\cdot dt\\ & = \displaystyle \int_{x}^{x+\Delta x} f(t)\cdot dt \\ \because & f(x)\in C[a,b] \text{根据定积分中值定理} \\ \therefore & \exists\ \zeta\in(x,x+\Delta x), f(\zeta)\Delta x = \Delta\Phi \\ \therefore & \displaystyle \lim_{\Delta x\to 0} f(\zeta) = f(x) = \lim_{\Delta x\to 0}\frac{\Delta \Phi}{\Delta x} = \Phi'(x) \\ & \Phi'(x) = f(x)\end{array}

定理二 牛顿-莱布尼茨公式

  • f(x)C[a,b]f(x)\in C[a,b]F(x)F(x)f(x)f(x) 的一个原函数,则:abf(x)dx=F(b)F(a)\displaystyle \int_{a}^{b}f(x)\cdot dx = F(b)-F(a)

Proof Φ(x)=axf(x)dxΦ(x)=f(x)Φ(x)f(x)的原函数F(x)也为f(x)的一个原函数F(b)Φ(b)=C0,F(a)Φ(a)=C0Φ(a)=aaf(x)dx=0F(b)F(a)=Φ(b)abf(x)dx=F(b)F(a)\begin{array}{ll} & \displaystyle\text{设}\Phi(x) = \int_{a}^{x}f(x)\cdot dx \\ \because & \Phi'(x) = f(x) \\ \therefore & \Phi(x) \text{为}f(x)\text{的原函数} \\ \because & F(x)\text{也为}f(x)\text{的一个原函数} \\ \therefore & F(b)-\Phi(b) = C_{0}, F(a)-\Phi(a) = C_{0} \\ & \displaystyle\text{而}\Phi(a) = \int_{a}^{a}f(x)\cdot dx = 0 \\ \therefore & F(b) - F(a) = \Phi(b) \\ & \displaystyle\text{即} \int_{a}^{b}f(x)\cdot dx = F(b) - F(a)\end{array}

例题

  • 例1 limx00xet2costdtxx3\displaystyle \lim_{x\to 0}\frac{\int_{0}^{x}e^{-t^{2}}\cos t\cdot dt - x}{x^{3}} limx00xet2costdtxx3=limx0ex2cosx13x2=limx0ex2(cosx1)+(ex21)3x2=limx0ex2cosx13x2+limx0ex213x2=limx012x23x2+limx0x23x2=12 \begin{split} & \lim_{x\to 0}\frac{\int_{0}^{x}e^{-t^{2}}\cos t\cdot dt - x}{x^{3}} = \lim_{x\to 0} \frac{e^{-x^{2}}\cos x - 1}{3x^{2}} \\ = & \lim_{x\to 0}\frac{e^{-x^{2}}(\cos x - 1)+(e^{-x^{2}}-1)}{3x^{2}} \\ = & \lim_{x\to 0}e^{-x^{2}}\frac{\cos x -1}{3x^{2}} +\lim_{x\to 0}\frac{e^{-x^{2}}-1}{3x^{2}} \\ = & \lim_{x\to 0}\frac{-\frac{1}{2}x^{2}}{3x^{2}} + \lim_{x\to 0}\frac{-x^{2}}{3x^{2}} \\ =& -\frac{1}{2} \end{split}
  • 例2 f(x)f(x)连续,f(0)=0,f(0)=6f(0)=0,f'(0)=6,求limx00x(xt)f(t)dtx3\displaystyle \lim_{x\to 0}\frac{\int_{0}^{x}(x-t)f(t)\cdot dt}{x^3} limx00x(xt)f(t)dtx3=limx0x0xf(t)dt0xtf(t)dtx3=limx00xf(t)dt+xf(x)xf(x)3x2=limx0f(x)6x=16limx0f(x)f(0)x0=16f(0)=1 \begin{split} & \lim_{x\to 0}\frac{\int_{0}^{x}(x-t)f(t)\cdot dt}{x^{3}}\\ = & \lim_{x\to 0} \frac{x \int_{0}^{x}f(t)\cdot dt-\int_{0}^{x}tf(t)\cdot dt}{x^{3}} \\ = & \lim_{x\to 0} \frac{\int_{0}^{x}f(t)\cdot dt + xf(x)-xf(x)}{3x^{2}} \\ = & \lim_{x\to 0} \frac{f(x)}{6x} = \frac{1}{6}\lim_{x\to 0}\frac{f(x)- f(0)}{x-0} \\ = & \frac{1}{6}f'(0) = 1 \end{split}

定积分的特殊性质

对称性质

  • f(x)C[a,a]f(x)\in C[-a,a],则 aaf(x)dx=0a[f(x)+f(x)]dx \int_{-a}^{a}f(x)\cdot dx = \int_{0}^{a}\bigg[f(x)+f(-x)\bigg]\cdot dx

    Proof 左式=a0f(x)dx+0af(x)dxa0f(x)dx=x=ta0f(t)d(t)=a0f(t)dt=0af(x)dx左式=0af(x)dx+0af(x)dx=0a[f(x)+f(x)]dx\begin{array}{ll}& \displaystyle \text{左式} = \int_{-a}^{0}f(x)\cdot dx + \int_{0}^{a}f(x)\cdot dx\\ \because & \displaystyle \int_{-a}^{0} f(x)\cdot dx \xlongequal{x=-t} \int_{a}^{0}f(-t)\cdot d(-t) \\ &\displaystyle = -\int_{a}^{0}f(-t)\cdot dt = \int_{0}^{a}f(-x)\cdot dx\\ \therefore &\displaystyle \text{左式} = \int_{0}^{a}f(-x)\cdot dx + \int_{0}^{a}f(x)\cdot dx \\&\displaystyle = \int_{0}^{a}\big[f(x)+f(-x)\big]\cdot dx \\\end{array}

例题

  • 例1 π4π4dx1+sinx\displaystyle \int_{-\frac{\pi}{4}}^{\frac{\pi}{4}}\frac{dx}{1+\sin x} 原式=0π4[11+sinx+11sinx]dx=0π421sin2xdx=20π4sec2xdx=2tanx0π4=2 \begin{split} &\displaystyle \text{原式} = \int_{0}^{\frac{\pi}{4}}\bigg[\frac{1}{1+\sin x} + \frac{1}{1-\sin x}\bigg]\cdot dx \\ = & \displaystyle \int_{0}^{\frac{\pi}{4}} \frac{2}{1-\sin^{2}x} \cdot dx = 2\int_{0}^{\frac{\pi}{4}}\sec^{2}x\cdot dx \\ = &\displaystyle 2\tan x\vert_{0}^{\frac{\pi}{4}} = 2 \end{split}

三角函数

性质一 0π2f(sinx)dx=0π2f(cosx)dx\displaystyle \int_{0}^{\frac{\pi}{2}} f(\sin x)\cdot dx = \int_{0}^{\frac{\pi}{2}} f(\cos x)\cdot dx

  • f(x)C[0,1]f(x)\in C[0,1],则 0π2f(sinx)dx=0π2f(cosx)dx \int_{0}^{\frac{\pi}{2}} f(\sin x)\cdot dx = \int_{0}^{\frac{\pi}{2}} f(\cos x)\cdot dx

    Proof 0π2f(sinx)dx=t=π2xπ20f(cost)d(π2t)=π20f(cost)dt=0π2f(cosx)dx\begin{array}{ll} &\displaystyle \int_{0}^{\frac{\pi}{2}}f(\sin x)\cdot dx \xlongequal{t = \frac{\pi}{2}- x} \int_{\frac{\pi}{2}}^{0}f(\cos t)\cdot d\bigg(\frac{\pi}{2}-t\bigg)\\ = & \displaystyle -\int_{\frac{\pi}{2}}^{0}f(\cos t)\cdot dt = \int_{0}^{\frac{\pi}{2}}f(\cos x)\cdot dx \\\end{array}

  • 特别地 In0π2sinnxdx=0π2cosnxdx\displaystyle I_{n}\triangleq \int_{0}^{\frac{\pi}{2}}\sin^{n} x\cdot dx = \int_{0}^{\frac{\pi}{2}}\cos^{n} x\cdot dx {In=n1nIn2I1=1I0=π2 \begin{cases} I_{n} = \frac{n-1}{n}I_{n-2} \\ I_{1} = 1 \\ I_{0} = \frac{\pi}{2} \end{cases}

    Proof In=n1nIn2I_{n}= \frac{n-1}{n}I_{n-2} In=sinnxdx=cosnxdxIn=sinndx=sinn1d(cosx)=cosxsinn1x+(n1)cosxsinn2xcosxdx=cosxsinn1x+(n1)(1sin2x)sinn2xdx=cosxsinn1x+(n1)In2(n1)InnIn=cosxsinn1x+(n1)In2In=1ncosxsinn1x+n1nIn2In=0π2sinnxdx=0π2cosnxdxIn=1ncosxsinn1x0π2+n1nIn2cosxsinn1x0π2=0In=n1nIn2\begin{array}{ll} & \displaystyle 令\mathcal{I}_{n} = \int_{}^{}\sin^{n}x\cdot dx = \int_{}^{}\cos^{n}x\cdot dx \\ & \displaystyle \mathcal{I}_{n} = \int_{}^{} \sin^{n}\cdot dx = -\int_{}^{} \sin^{n-1}\cdot d(\cos x) \\ &= \displaystyle- \cos x\sin ^{n-1} x + (n-1)\int_{}^{}\cos x \cdot \sin^{n-2}x \cos x\cdot dx \\ &= \displaystyle - \cos x\sin^{n-1} x + (n-1)\int_{}^{}(1-\sin^{2}x)\sin^{n-2}x\cdot dx \\ &= -\cos x\sin ^{n-1}x + (n-1)\mathcal{I}_{n-2} - (n-1)\mathcal{I}_{n} \\ \therefore & n\mathcal{I}_{n} = -\cos x\sin ^{n-1}x +(n-1)\mathcal{I}_{n-2}\\ & \mathcal{I}_{n} = -\frac{1}{n}\cos x\sin^{n-1}x+\frac{n-1}{n}\mathcal{I}_{n-2}\\ & \displaystyle\text{令}I_{n} = \int_{0}^{\frac{\pi}{2}}\sin ^{n}x\cdot dx = \int_{0}^{\frac{\pi}{2}}\cos^{n}x\cdot dx\\ \therefore & \displaystyle I_{n} = -\frac{1}{n}\cos x\sin^{n-1}x\vert_{0}^{\frac{\pi}{2}} + \frac{n-1}{n}I_{n-2}\\ \because & \cos x\sin^{n-1}x\vert_{0}^{\frac{\pi}{2}} = 0 \\ \therefore & I_{n} = \frac{n-1}{n}I_{n-2} \\\end{array}

  • 例1 01dxx+1x2\displaystyle\int_{0}^{1}\frac{dx}{x+\sqrt{1-x^{2}}} 01dxx+1x2=x=sint0π2costsint+costdt=0π2sintcost+sintdt20π2costsint+costdt=0π2sint+costsint+costdt=0π21dx=π2原式=π4 \begin{array}{ll} \because&\displaystyle \int_{0}^{1}\frac{dx}{x+\sqrt{1-x^{2}}} \xlongequal{x=\sin t} \int_{0}^{\frac{\pi}{2}} \frac{\cos t}{\sin t+\cos t}\cdot dt = \int_{0}^{\frac{\pi}{2}} \frac{\sin t}{\cos t +\sin t}\cdot dt \\ \therefore & \displaystyle 2 \int_{0}^{\frac{\pi}{2}}\frac{\cos t}{\sin t + \cos t}\cdot dt = \int_{0}^{\frac{\pi}{2}}\frac{\sin t + \cos t}{\sin t + \cos t}\cdot dt = \int_{0}^{\frac{\pi}{2}}1\cdot dx = \frac{\pi}{2} \\ \therefore & \text{原式} = \frac{\pi}{4} \end{array}

  • 例2 I=02x22xx2dx\displaystyle I = \int_{0}^{2}x^{2}\sqrt{2x-x^{2}}\cdot dx 02x22xx2dx=02[1+(x1)]21(x1)2d(x1)=11(1+x)21x2dx=x=sintπ2π2(1+sint)2costd(sint)=0π2[cos2t(2+2sin2t)]dt=20π2cos2t(2cos2t)=2(2I2I4)=2(212π23412π2)=π38π=58π \begin{split} & \displaystyle \int_{0}^{2}x^{2} \sqrt{2x-x^{2}}\cdot dx = \int_{0}^{2} [1+(x-1)]^{2}\sqrt{1-(x-1)^{2}}\cdot d(x-1) \\ = & \displaystyle \int_{-1}^{1}(1+x)^{2}\sqrt{1-x^{2}}\cdot dx \xlongequal{x= \sin t} \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} (1+\sin t)^{2}\cos t \cdot d(\sin t) \\ = & \displaystyle \int_{0}^{\frac{\pi}{2}}\big[\cos^{2} t(2 + 2\sin^{2}t)\big]\cdot dt = 2 \int_{0}^{\frac{\pi}{2}}\cos^{2}t(2-\cos^{2}t) \\ = & 2(2I_{2}-I_{4}) = 2(2\cdot \frac{1}{2}\cdot\frac{\pi}{2}-\frac{3}{4}\cdot \frac{1}{2}\cdot \frac{\pi}{2}) = \pi - \frac{3}{8}\pi\\ = & \frac{5}{8}\pi \end{split}
  • 例3
    1. f,gC[a,a],f(x)+f(x)=A,g(x)=g(x)f,g\in C[-a,a], f(-x)+f(x) = A,g(-x)=g(x),证明 aaf(x)g(x)dx=A0ag(x)dx\displaystyle \int_{-a}^{a}f(x)g(x)\cdot dx = A\int_{0}^{a}g(x)\cdot dx aaf(x)g(x)dx=0a[f(x)g(x)+f(x)g(x)]dxf(x)+f(x)=A,g(x)=g(x)原式=0ag(x)[f(x)+f(x)]dx=0aAg(x)dx=A0ag(x)dx \begin{array}{ll} \because & \int_{-a}^{a}f(x)g(x)\cdot dx = \int_{0}^{a}[f(x)g(x)+f(-x)g(-x)]\cdot dx \\ & \text{且}f(x)+f(-x)=A, g(x) = g(-x) \\ \therefore & \text{原式} = \int_{0}^{a}g(x)[f(x)+f(-x)]\cdot dx = \int_{0}^{a}Ag(x)\cdot dx \\ &= A \int_{0}^{a}g(x)\cdot dx \end{array}
    2. π2π2arctanexsin2xdx\displaystyle \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}}\arctan e^{x}\sin^{2}x\cdot dx π2π2=0π2sin2x(arctanex+arctanex)dxf(x)=arctanex+arctanexf(x)=ex1+e2x+ex1+e2x=ex1+e2xexe2x+1=0arctanex+arctanex为常数π2原式=π20π2sin2xdx=π2I2=π212π2=π28 \begin{array}{ll} & \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} = \int_{0}^{\frac{\pi}{2}}\sin^{2}x(\arctan e^{x} + \arctan e^{-x})\cdot dx \\ & \text{令} f(x) = \arctan e^{x} + \arctan e^{-x} \\ \therefore & f'(x) = \frac{e^{x}}{1+e^{2x}} + \frac{-e^{-x}}{1+e^{-2x}} = \frac{e^{x}}{1+e^{2x}} - \frac{e^{x}}{e^{2x}+1} = 0\\ \therefore & \arctan e^{x} + \arctan e^{-x}\text{为常数}\frac{\pi}{2} \\ \therefore & \text{原式} = \frac{\pi}{2}\int_{0}^{\frac{\pi}{2}}\sin^{2}x\cdot dx = \frac{\pi}{2}I_{2} = \frac{\pi}{2}\cdot \frac{1}{2}\cdot \frac{\pi}{2} = \frac{\pi^{2}}{8} \end{array}

性质二 0πf(sinx)dx=20π2f(sinx)dx\displaystyle \int_{0}^{\pi}f(\sin x)\cdot dx = 2\int_{0}^{\frac{\pi}{2}}f(\sin x)\cdot dx

Proof 0πf(sinx)dx=0π2f(sinx)dx+π2πf(sinx)dxπ2πf(sinx)dx=x=t+π20π2f(sin(t+π2))dt=0π2f(cost)dt原式=0π2f(sinx)dx+0π2f(cosx)dx=20π2f(sinx)dx\begin{array}{ll}\because & \int_{0}^{\pi}f(\sin x)\cdot dx = \int_{0}^{\frac{\pi}{2}} f(\sin x)\cdot dx+ \int_{\frac{\pi}{2}}^{\pi}f(\sin x)\cdot dx \\& \int_{\frac{\pi}{2}}^{\pi} f(\sin x)\cdot dx \xlongequal{x=t+\frac{\pi}{2}} \int_{0}^{\frac{\pi}{2}}f(\sin (t+\frac{\pi}{2})) \cdot dt = \int_{0}^{\frac{\pi}{2}}f(\cos t)\cdot dt\\\therefore & \text{原式} = \int_{0}^{\frac{\pi}{2}}f(\sin x)\cdot dx + \int_{0}^{\frac{\pi}{2}}f(\cos x)\cdot dx \\& = 2 \int_{0}^{\frac{\pi}{2}} f(\sin x)\cdot dx\end{array}

  • 例1 I=ππsin2x1+exdx\displaystyle I =\int_{-\pi}^{\pi}\frac{\sin^{2}x}{1+e^{x}}\cdot dx I=0πsin2x(11+ex+11+ex)dx=0πsin2x(11+ex+exex+1)dx=0πsin2xdx=20π2sin2xdx=2I2=212π2=π2 \begin{split} & I = \int_{0}^{\pi}\sin^{2}{x}(\frac{1}{1+e^{x}}+\frac{1}{1+e^{-x}})\cdot dx \\ = & \int_{0}^{\pi}\sin^{2}x(\frac{1}{1+e^{x}}+ \frac{e^{x}}{e^{x}+1})\cdot dx \\ = & \int_{0}^{\pi}\sin^{2}x\cdot dx \\ = & 2 \int_{0}^{\frac{\pi}{2}}\sin^{2} x\cdot dx = 2I_{2} \\ = & 2 \cdot \frac{1}{2}\cdot \frac{\pi}{2} = \frac{\pi}{2} \end{split} Notes
  • cosx\cos x无此性质,而 cosx,cos2nx\vert \cos x\vert, \cos^{2n} x 则有此性质

性质三 0πxf(sinx)dx=π20πf(sinx)dx\displaystyle \int_{0}^{\pi}xf(\sin x)\cdot dx= \frac{\pi}{2}\int_{0}^{\pi}f(\sin x)\cdot dx

Proof I=0πxf(sinx)dx=x+t=ππ0(πt)f[sin(πt)]d(πt)=0π(πx)f(sinx)dx=π0πf(sinx)dxI2I=π0πf(sinx)dxI=π20πf(sinx)dx\begin{array}{ll}\because & I = \int_{0}^{\pi}xf(\sin x)\cdot dx \xlongequal{x+t = \pi} \int_{\pi}^{0}(\pi -t)f[\sin(\pi-t)] \cdot d(\pi - t) \\& = \int_{0}^{\pi}(\pi-x)f(\sin x)\cdot dx = \pi \int_{0}^{\pi}f(\sin x)\cdot dx - I \\\therefore & 2I = \pi \int_{0}^{\pi}f(\sin x)\cdot dx \\& I = \frac{\pi}{2}\int_{0}^{\pi}f(\sin x)\cdot dx\end{array}

  • 例1 I=0πxsin2xdx\displaystyle I = \int_{0}^{\pi}x\sin^{2} x\cdot dx I=π20πsin2xdx=π0π2sin2xdx=πI2=π×12×π2=π24 \begin{split} &I = \frac{\pi}{2}\int_{0}^{\pi} \sin ^{2} x\cdot dx\\ = & \pi \int_{0}^{\frac{\pi}{2}}\sin^{2} x \cdot dx = \pi I_{2} = \pi\times \frac{1}{2}\times \frac{\pi}{2}\\ = &\frac{\pi^{2}}{4} \end{split}

周期函数

  • f(x)f(x)连续且以 TT 为周期
    1. aa+Tf(x)dx=0Tf(x)dx\displaystyle \int_{a}^{a+T}f(x)\cdot dx = \int_{0}^{T}f(x)\cdot dx
    2. 0nTf(x)dx=n0Tf(x)dx\displaystyle \int_{0}^{nT}f(x)\cdot dx = n\int_{0}^{T}f(x)\cdot dx

results matching ""

    No results matching ""