Section02_求导工具

Notes

  1. 基本初等函数: {xaax(a>0 & a1)logax(a>0 &a1)sinx,cosx,tanx,cotx,secx,cscxarcsinx,arccosx,arctanx,arccot x\begin{cases}x^{a}\\a^{x}& (a>0\ \&\ a\neq1 )\\\log_{a}x&(a>0\ \& a\neq 1)\\\sin x,\cos x, \tan x,\cot x,\sec x, \csc x\\\arcsin x,\arccos x, \arctan x,\text{arccot } x\end{cases}
  2. 初等函数:由{常数基本初等函数\begin{cases}\text{常数}\\\text{基本初等函数}\end{cases}经过{四则运算复合\begin{cases}\text{四则运算}\\\text{复合}\end{cases}而成的函数

基本公式

(一)基本公式

f(x)f(x) f(x)f'(x) 特殊
cc 00
xax^{a} axa1a\cdot x^{a-1} {(x)=1x(1x)=1x2\begin{cases}(\sqrt{x})'=\frac{1}{\sqrt{x}}\\(\frac{1}{x})'=-\frac{1}{x^{2}}\end{cases}
axa^x lnaax\ln a\cdot a^x (ex)=ex(e^{x})'=e^{x}
logax\log_{a} x 1xlna\frac{1}{x\ln a} (lnx)=1x(\ln x)'=\frac{1}{x}
sinx\sin x cosx\cos x
cosx\cos x sinx-\sin x
tanx\tan x sec2x=1cos2x\sec^{2} x=\frac{1}{\cos^2 x}
cotx\cot x csc2x=1sin2x-\csc^2 x=-\frac{1}{\sin^2 x}
secx\sec x secxtanx\sec x\tan x
cscx\csc x cscxcotx-\csc x\cot x
arcsinx\arcsin x 11x2\frac{1}{\sqrt{1-x^{2}}}
arccosx\arccos x 11x2-\frac{1}{\sqrt{1-x^{2}}}
arctanx\arctan x 11+x2\frac{1}{1+x^{2}}
arccot x\text{arccot } x 11+x2-\frac{1}{1+x^{2}}

nn 阶导数

  • (sinx)(n)=sin(x+nπ2)(\sin x)^{(n)} = \sin(x+\frac{n\pi}{2})
  • (cosx)(n)=cos(x+nπ2)(\cos x)^{(n)} = \cos(x+\frac{n\pi}{2})
  • (1ax+b)n=(1)nn!an(ax+b)n+1\displaystyle{\bigg(\frac{1}{ax+b}\bigg)^{n}=\frac{(-1)^{n}n!a^{n}}{(ax+b)^{n+1}}}

(二)求导法则

四则运算

  1. (u±v)=u±v(u\pm v)' = u'\pm v'
  2. (uv)=uv+vu(uvw)=uvw+uvw+uvw(uv)'=u'v+v'u\quad (uvw)'=u'vw+uv'w+uvw'
  3. (uv)=uvuvv2(\frac{u}{v})'=\frac{u'v-uv'}{v^{2}}

复合法则

  • y=f(u)y=f(u) 可导,u=ϕ(x)u=\phi(x) 可导,且 ϕ(x)0\phi'(x)\neq 0y=f(ϕ(x))y=f(\phi(x)) 可导,且 dydx=dydududx=f(u)ϕ(x)=f(ϕ(x))ϕ(x)\frac{dy}{dx}=\frac{dy}{du}\frac{du}{dx}=f'(u)\phi'(x)=f'(\phi(x))\phi'(x)
  • Proof f(u)=limΔu0ΔyΔu, ϕ(x)=limΔx0ΔuΔx0Δu=O(Δx)dydx=limΔx0ΔyΔx=limΔx0ΔyΔuΔuΔx=limΔu0ΔyΔulimΔx0ΔuΔx=f(u)ϕ(x)=f(ϕ(x))ϕ(x) \begin{split} & f'(u) = \lim_{\Delta u\to 0}\frac{\Delta y}{\Delta u},\ \phi'(x)=\lim_{\Delta x\to 0}\frac{\Delta u}{\Delta x}\neq 0\Rightarrow\Delta u = O(\Delta x)\\ \Rightarrow & \frac{dy}{dx} = \lim_{\Delta x\to0}\frac{\Delta y}{\Delta x}=\lim_{\Delta x\to0}\frac{\Delta y}{\Delta u}\frac{\Delta u}{\Delta x} = \lim_{\Delta u\to 0}\frac{\Delta y}{\Delta u}\lim_{\Delta x\to 0}\frac{\Delta u}{\Delta x} \\ & = f'(u)\phi'(x) = f'(\phi(x))\phi'(x) \end{split}

(三)反函数求导

  • 定理 y=f(x)y=f(x) 可导且 f(x)0f'(x)\neq 0f(x)f(x) 严格单调)x=ϕ(y)\Rightarrow x=\phi(y)可导,且:ϕ(y)=1f(x)\phi'(y)=\frac{1}{f'(x)}
    • Proof y=f(x),x=ϕ(y)y=f(ϕ(y))1=f(ϕ(y))ϕ(y)ϕ(y)=1f(x)\begin{split}&y=f(x), x=\phi(y)\\ \Rightarrow & y=f(\phi(y))\\ \Rightarrow& 1=f'(\phi(y))\phi'(y)\\ \Rightarrow &\phi'(y) = \frac{1}{f'(x)}\end{split}
  • 例 求 y=ln(x+1+x2)y=\ln(x+\sqrt{1+x^{2}}) 的反函数
  • y=ln(x+1+x2)ey=x+1+x2(x+1+x2)(x+1+x2)=1x+1+x2=1x+1+x2=ey2x=eyeyx=12(eyey) \begin{array}{ll} \because & y = \ln(x+\sqrt{1+x^{2}}) \\ \therefore & e^{y} = x+\sqrt{1+x^{2}}\\ \because & (-x+\sqrt{1+x^{2}})(x+\sqrt{1+x^{2}})=1 \\ \therefore & -x+\sqrt{1+x^{2}}=\frac{1}{x+\sqrt{1+x^{2}}} = e^{-y} \\ \therefore & 2x = e^{y}-e^{-y} \\ & x= \frac{1}{2}(e^{y}-e^{-y}) \end{array}

results matching ""

    No results matching ""