Section02_极限重点题型

  1. 先和后极限
    • limn[11×3+13×5++1(2n1)(2n+1)]\displaystyle{\lim_{n\to \infty}\bigg[\frac{1}{1\times 3}+\frac{1}{3\times 5}+\cdots+\frac{1}{(2n-1)(2n+1)}\bigg]}
    • 1(2n1)(2n+1)=12(12n112n+1)11×3+13×5++1(2n1)(2n+1)=12(113)+12(1315)++12(12n112n+1)=12(112n+1)=2n4n+2limn[]=limn2n4n+2=12\begin{array}{ll} \because & \frac{1}{(2n-1)(2n+1)} = \frac{1}{2}\big(\frac{1}{2n-1}-\frac{1}{2n+1}\big) \\ \therefore & \frac{1}{1\times 3} + \frac{1}{3 \times 5}+\cdots + \frac{1}{(2n-1)(2n+1)}\\ & = \frac{1}{2}(1-\frac{1}{3})+\frac{1}{2}(\frac{1}{3}-\frac{1}{5})+\cdots + \frac{1}{2}(\frac{1}{2n-1}-\frac{1}{2n+1})\\ & = \frac{1}{2}(1-\frac{1}{2n+1}) = \frac{2n}{4n+2} \\ \therefore & \lim_{n\to \infty}\big[\cdots\big]=\lim_{n\to\infty}\frac{2n}{4n+2}=\frac{1}{2} \end{array}
  2. 分子或分母次数不齐 (采用夹逼定理,哪个不齐放大缩小哪个)
    • 例1 limn(14n2+1+14n2+2++14n2+n)\displaystyle{\lim_{n\to\infty}\bigg(\frac{1}{4n^{2}+1}+\frac{1}{4n^{2}+2}+\cdots+\frac{1}{4n^{2}+n}\bigg)}
    • let 14n2+1+14n2+2++14n2+nbn14n2+n14n2+i14n2+1(1in)n4n2+nbnn4n2+1limnn4n2+n=12limnn4n2+1=12limnbn=12 \begin{array}{ll} & \text{let } \frac{1}{\sqrt{4n^{2}+1}}+\frac{1}{\sqrt{4n^{2}+2}}+\cdots+\frac{1}{\sqrt{4n^{2}+n}}\coloneqq b_n \\ \because & \frac{1}{\sqrt{4n^{2}+n}} \le \frac{1}{\sqrt{4n^{2}+i}} \le \frac{1}{\sqrt{4n^{2}+1}} (1\le i\le n) \\ \therefore & \frac{n}{\sqrt{4n^{2}+n}}\le b_{n}\le \frac{n}{\sqrt{4n^{2}+1}} \\ \because & \lim_{n\to\infty}\frac{n}{\sqrt{4n^{2}+n}} = \frac{1}{2} \\ & \lim_{n\to \infty}\frac{n}{4n^{2}+1} = \frac{1}{2} \\ \therefore & \lim_{n\to \infty}b_{n} = \frac{1}{2} \\ \end{array}
    • 例2 limn(1n2+n+1+2n2+n+2++nn2+n+n)\displaystyle{\lim_{n\to \infty}\bigg(\frac{1}{n^{2}+n+1}+\frac{2}{n^{2}+n+2}+\cdots+\frac{n}{n^{2}+n+n}\bigg)}
    • let 1n2+n+1+2n2+n+2++nn2+n+nbnin2+n+nin2+n+iin2+n+1 (1in)i=1nin2+n+nbni=1nin2+n+1limni=1nin2+n+n=limn(1+n)n/2n2+n+n=12limni=1nin2+n+1=limn(1+n)n/2n2+n+1=12limnbn=12 \begin{array}{ll} & \text{let } \frac{1}{n^{2}+n+1}+\frac{2}{n^{2}+n+2}+\cdots+\frac{n}{n^{2}+n+n}\coloneqq b_{n} \\ \because & \frac{i}{n^{2}+n+n}\le \frac{i}{n^{2}+n+i} \le \frac{i}{n^{2}+n+1}\ (1\le i\le n) \\ \therefore & \sum_{i=1}^{n}\frac{i}{n^{2}+n+n}\le b_{n}\le \sum_{i=1}^{n}\frac{i}{n^{2}+n+1} \\ \because & \lim_{n\to \infty}\sum_{i=1}^{n}\frac{i}{n^{2}+n+n} = \lim_{n\to \infty}\frac{(1+n)n/2}{n^{2}+n+n} = \frac{1}{2} \\ & \lim_{n\to \infty}\sum_{i=1}^{n}\frac{i}{n^{2}+n+1} = \lim_{n\to \infty}\frac{(1+n)n/2}{n^{2}+n+1} = \frac{1}{2} \\ \therefore & \lim_{n\to \infty}b_{n} = \frac{1}{2} \\ \end{array}
  3. 分子齐次,分母齐次 or 分母比分子多一次 => 采用定积分 limn1ni=1nf(i1n)=limn1ni=1nf(in)=01f(x)dx\lim_{n\to \infty}\frac{1}{n}\sum_{i=1}^{n}f\bigg(\frac{i-1}{n}\bigg) = \lim_{n\to \infty}\frac{1}{n}\sum_{i=1}^{n}f\bigg(\frac{i}{n}\bigg) = \int_{0}^{1}f(x)\cdot dx
    • 例1 limn(1n+1+1n+2++1n+n)\displaystyle{\lim_{n\to \infty}\bigg(\frac{1}{n+1}+\frac{1}{n+2}+\cdots+\frac{1}{n+n}\bigg)}
    • limni=1n1n+i=limn1ni=1n11+in=0111+xdxlimni=1n1n+i=0111+xdx=ln(1+x)01=ln(2)\begin{array}{ll} \because & \lim_{n\to \infty}\sum_{i=1}^{n}\frac{1}{n+i} = \lim_{n\to \infty}\frac{1}{n}\sum_{i=1}^{n}\frac{1}{1+\frac{i}{n}} \\ & = \int_{0}^{1}\frac{1}{1+x}\cdot dx \\ \therefore & \lim_{n\to \infty}\sum_{i=1}^{n}\frac{1}{n+i} = \int_{0}^{1}\frac{1}{1+x}\cdot dx = \ln(1+x)\vert^{1}_{0} = \ln(2) \\ \end{array}
    • 例2 limn(nn2+12+nn2+22++nn2+n2)\displaystyle{\lim_{n\to \infty}\bigg(\frac{n}{n^{2}+1^{2}} + \frac{n}{n^{2}+2^{2}} + \cdots + \frac{n}{n^{2}+n^{2}}\bigg)}
    • limni=1nnn2+i2=limni=1n1n11+(in)2limni=1nnn2+i2=0111+x2dx=arctan(x)01=π4\begin{array}{ll} \because & \lim_{n\to \infty}\sum_{i=1}^{n}\frac{n}{n^{2}+i^{2}} = \lim_{n\to \infty}\sum_{i=1}^{n}\frac{1}{n}\frac{1}{1+(\frac{i}{n})^{2}} \\ \therefore & \lim_{n\to \infty}\sum_{i=1}^{n}\frac{n}{n^{2}+i^{2}} = \int_{0}^{1}\frac{1}{1+x^{2}}\cdot dx = \arctan(x)\vert^{1}_{0} = \frac{\pi}{4} \\ \end{array}

型二 limnan  ?\displaystyle{\lim_{n\to\infty}a_{n}\ \exists\ ?}

准则II:单调有界的数列必有极限

有界

  1.  M>0, n,an<M,{an}\exists\ M>0, \forall\ n, \vert a_{n}\vert<M, \{a_{n}\}有界
  2.  M1>0, n,anM1,{an}\exists\ M_{1}>0, \forall\ n, a_{n}\ge M_{1}, \{a_{n}\}有下界;若 M2>0, n,anM2,{an}\exists\ M_{2}>0, \forall\ n, a_{n}\le M_{2}, \{a_{n}\}有上界
  3. {an}\{a_n\}有界 \Leftrightarrow {an}\{a_n\} 有上下界

an{a_n} 单调递增{无上界  limnan=+anM  limnan\begin{cases}\text{无上界 }\Rightarrow\ \lim_{n\to\infty}a_{n}=+\infty\\ a_{n}\le M\ \Rightarrow\ \lim_{n\to\infty}a_{n} \exists\end{cases} an{a_n} 单调递减{无下界  limnan=anM  limnan\begin{cases}\text{无下界 }\Rightarrow\ \lim_{n\to\infty}a_{n}=-\infty\\ a_{n}\ge M\ \Rightarrow\ \lim_{n\to\infty}a_{n} \exists\end{cases}

重要不等式

  1. When x0,sinxx\color{#D0104C}\text{When }x\ge 0, \sin x\le x
  2. When x>0,ln(1+x)<x\color{#D0104C}\text{When }x > 0, \ln{(1+x)} < x
  • 例1:a1>0a_{1}>0an+1=ln(an+1)(n=1,2,)a_{n+1}=\ln(a_{n}+1)\quad (n=1,2,\cdots),证明limnan\displaystyle{\lim_{n\to\infty}a_{n}}存在并求极限
  • a1>0Suppose ak>0ak+1=ln(ak+1)>0n, an>0an>0an+1=ln(1+an)<an{an}单调递减 limnanSuppose limnan=AA=ln(1+A)A=0limnan=0\begin{array}{ll} \because & a_{1}>0 \\ & \text{Suppose } a_{k} > 0\\ \because & a_{k+1} = \ln(a_{k}+1) > 0 \\ \therefore & \forall n,\ \exists a_{n} > 0 \\ \because & a_{n} > 0 \\ \therefore & a_{n+1} = ln(1+a_{n}) < a_{n} \\ \therefore & \{a_{n}\}\text{单调递减} \\ \therefore & \exists\ \lim_{n\to \infty}a_{n} \\\\ & \text{Suppose } \lim_{n\to \infty}a_{n}=A \\ \therefore & A = \ln(1+A) \\ \therefore & A = 0 \\ \therefore & \lim_{n\to \infty}a_{n} = 0 \\ \end{array}
  • 例2:设 a1=2,a2=2+2,a3=2+2+2,a_{1}=\sqrt{2},a_{2}=\sqrt{2+\sqrt{2}},a_{3}=\sqrt{2+\sqrt{2+\sqrt{2}}},\cdots,证明 limnan\displaystyle{\lim_{n\to\infty}a_{n}} 存在并求之
  • a1=2,a1<a2,an+1=2+an (n=1,2,)Suppose ak<ak+12+ak<2+ak+1ak+1<ak+2{an}单调递增a1=2<2Suppose ak<2ak+1=ak+2<2 n, an<2 limnanSuppose limnan=AA=2+AA=2limnan=2\begin{array}{ll} \because & a_{1} = \sqrt{2}, a_{1}<a_{2},a_{n+1} = \sqrt{2 + a_{n}}\ (n=1,2,\cdots) \\ & \text{Suppose } a_{k} < a_{k+1}\\ \therefore & \sqrt{2+a_{k}} < \sqrt{2 +a_{k+1}} \Rightarrow a_{k+1} < a_{k+2} \\ \therefore & \{a_{n}\}\text{单调递增} \\ \because & a_{1} = \sqrt{2} < 2 \\ & \text{Suppose }a_{k} < 2 \\ \therefore & a_{k+1} = \sqrt{a_{k}+2} < 2 \\ \therefore & \forall\ n, \exists\ a_{n} < 2\\ \therefore & \exists\ \lim_{n\to \infty}a_{n} \\\\ & \text{Suppose } \lim_{n\to \infty}a_{n} = A\\ \therefore & A = \sqrt{2+A} \\ \therefore & A = 2 \\ \therefore & \lim_{n\to \infty}a_{n}=2 \\ \end{array}
  • 例3:设 a1=2,an+1=12(an+1an) (n=1,2,)a_{1}=2, a_{n+1} = \frac{1}{2}(a_{n}+\frac{1}{a_{n}})\ (n=1,2,\cdots) 证明 limnan\lim_{n\to\infty}a_{n}存在
  • a1=2,an+1=12(an+1an) x>0, x+1x2an+112×2=1 n, an1an+1an=12(an+1an)an1an1anan+1an0{an}单调递减 limnanSuppose limnan=AA=12(A+1A)12A2=12A=±1a1=2>0limnan=1\begin{array}{ll} \because & a_{1} = 2, a_{n+1} = \frac{1}{2}(a_{n}+\frac{1}{a_{n}}) \\ \because & \forall\ x>0, \exists\ x+\frac{1}{x} \ge 2 \\ \therefore & a_{n+1}\ge \frac{1}{2} \times 2 = 1 \\ \therefore & \forall\ n, \exists\ a_{n}\ge 1 \\ \because & a_{n+1} - a_{n} = \frac{1}{2}(-a_{n} + \frac{1}{a_{n}}) \\ \because & a_{n} \ge 1 \\ \therefore & a_{n}\ge \frac{1}{a_{n}} \\ \therefore & a_{n+1}-a_{n} \le 0 \\ & \{a_{n}\}\text{单调递减} \\ \therefore & \exists\ \lim_{n\to \infty}a_{n} \\\\ & \text{Suppose }\lim_{n\to \infty}a_{n} = A \\ \therefore & A = \frac{1}{2}(A+\frac{1}{A}) \\ & \frac{1}{2}A^{2}=\frac{1}{2} \\ \therefore & A = \pm 1 \\ \because & a_{1} = 2 >0 \\ \therefore & \lim_{n\to \infty}a_{n} = 1 \\ \end{array}

results matching ""

    No results matching ""