Section03_正态总体下常见的抽样分布

单正态总体

设总体XN(μ,σ2)X\sim \mathcal{N}(\mu,\sigma^{2})X1,X2,,XnX_{1},X_{2},\cdots,X_{n} 为样本

Xˉ=1ni=1nXiS2=1n1i=1n(XiXˉ)2B2=1ni=1n(XiXˉ)2 \begin{array}{ll} \displaystyle \bar{X} = \frac{1}{n}\sum_{i=1}^{n}X_{i}\quad & \displaystyle S^{2}=\frac{1}{n-1}\sum_{i=1}^{n}(X_{i}-\bar{X})^{2}\\ \displaystyle B_{2} = \frac{1}{n}\sum_{i=1}^{n}(X_{i}-\bar{X})^{2} \end{array}

  1. XˉN(μ,σ2n);xˉμσ/nN(0,1);(Xˉμσ/n)2χ2(1)\displaystyle \bar{X}\sim \mathcal{N}(\mu, \frac{\sigma^{2}}{n});\quad \frac{\bar{x}- \mu}{\sigma/\sqrt{n}} \sim \mathcal{N}(0,1);\quad \bigg(\frac{\bar{X}-\mu}{\sigma/\sqrt{n}}\bigg)^{2}\sim \chi^{2}(1)
  2. i=1n(Xiμσ)2=i=1n(Xiμ)2σ2χ2(n)\displaystyle \sum\limits_{i=1}^{n}\bigg(\frac{X_{i}-\mu}{\sigma}\bigg)^{2} = \frac{\sum\limits_{i=1}^{n}(X_{i}-\mu)^{2}}{\sigma^{2}} \sim \chi^{2}(n)
  3. i=1n(XiXˉσ)2=i=1n(XiXˉ)2σ2=(n1)S2σ2=nB2σ2χ2(n1)\displaystyle \sum\limits_{i=1}^{n}\bigg(\frac{X_{i}- \bar{X}}{\sigma}\bigg)^{2} = \frac{\sum\limits_{i=1}^{n}(X_{i}-\bar{X})^{2}}{\sigma^{2}} = \frac{(n-1)S^{2}}{\sigma^{2}}= \frac{nB_{2}}{\sigma^{2}} \sim \chi^{2}(n-1)
    • Xˉ\bar{X}S2S^{2} 独立
  4. XˉμS/n=Xˉμσ/n(n1)S2σ2(n1)t(n1);(XˉμS/n)2F(1,n1)\displaystyle \frac{\bar{X} - \mu}{S/\sqrt{n}} = \frac{\frac{\bar{X} -\mu}{\sigma/\sqrt{n}}}{\sqrt{\frac{(n-1)S^{2}}{\sigma^{2}(n-1)}}}\sim t(n-1);\quad \bigg(\frac{\bar{X} - \mu}{S/\sqrt{n}}\bigg)^{2}\sim F(1,n-1)

双正态分布

总体 XN(μ1,σ12)X\sim \mathcal{N}(\mu_{1},\sigma_{1}^{2}),总体 YN(μ2,σ22)Y\sim \mathcal{N}(\mu_{2},\sigma_{2}^{2})X1,X2,Xn1X_{1},X_{2},\cdots X_{n_{1}}Y1,Y2,,Yn2Y_{1},Y_{2},\cdots, Y_{n_{2}} 分别是总体 XXYY 的样本

Xˉ=1n1i=1n1XiYˉ=1n2j=1n2YjS12=1n11i=1n1(XiXˉ)2S22=1n21j=1n2(YjYˉ)2 \begin{array}{ll} \displaystyle \bar{X} = \frac{1}{n_{1}}\sum_{i=1}^{n_{1}}X_{i} & \displaystyle \bar{Y} = \frac{1}{n_{2}}\sum_{j=1}^{n_{2}}Y_{j} \\ \displaystyle S_{1}^{2} = \frac{1}{n_{1}-1}\sum_{i=1}^{n_{1}}(X_{i}-\bar{X})^{2} & \displaystyle S_{2}^{2} = \frac{1}{n_{2}-1}\sum_{j=1}^{n_{2}}(Y_{j}-\bar{Y})^{2} \end{array}

X,YX,Y 独立,则

  1. XˉN(μ1,σ12n1);YˉN(μ2,σ22n2)\bar{X}\sim \mathcal{N}(\mu_{1}, \frac{\sigma_{1}^{2}}{n_{1}});\quad \bar{Y}\sim \mathcal{N}(\mu_{2}, \frac{\sigma_{2}^{2}}{n_{2}}),若 σ12=σ22=σ2\sigma_{1}^{2} = \sigma_{2}^{2} = \sigma^{2},则

    • XˉYˉN(μ1μ2,σ2(1n1+1n2))\displaystyle \bar{X}-\bar{Y}\sim \mathcal{N}(\mu_{1}-\mu_{2}, \sigma^{2}(\frac{1}{n_{1}}+\frac{1}{n_{2}}))
    • (n11)S12σ2+(n21)S22σ2χ2(n1+n22)\displaystyle \frac{(n_{1}-1)S_{1}^{2}}{\sigma^{2}} + \frac{(n_{2}-1)S_{2}^{2}}{\sigma^{2}} \sim\chi^{2}(n_{1}+n_{2}- 2)
    • XˉYˉ(μ1μ2)σ2(1n1+1n2)(n11)S12+(n21)S22σ2×(n1+n22)=XˉYˉ(μ1μ2)Sω1n1+1n2t(n1+n22)\displaystyle \frac{\frac{\bar{X}- \bar{Y} - (\mu_{1} - \mu_{2})}{\sigma^{2}(\frac{1}{n_{1}} + \frac{1}{n_{2}})}}{\sqrt{\frac{(n_{1}-1)S_{1}^{2} + (n_{2}-1)S_{2}^{2}}{\sigma^{2}\times (n_{1}+n_{2} -2)}}} = \frac{\bar{X} - \bar{Y} - (\mu_{1} - \mu_{2})}{S_{\omega}\sqrt{\frac{1}{n_{1}}+ \frac{1}{n_{2}}}} \sim t(n_{1}+n_{2} -2)
      • Sω2=(n11)S12+(n21)S22n1+n22\displaystyle S_{\omega}^{2} = \frac{(n_{1}-1)S_{1}^{2} + (n_{2}-1)S_{2}^{2}}{n_{1} + n_{2} - 2}
  2. (n11)S12(n11)σ12(n21)S22(n22)σ22=S12/σ12S22/σ22F(n11,n21)\displaystyle \frac{\frac{(n_{1}-1)S_{1}^{2}}{(n_{1}-1)\sigma_{1}^{2}}}{\frac{(n_{2}-1)S_{2}^{2}}{(n_{2}-2)\sigma_{2}^{2}}} = \frac{S_{1}^{2}/\sigma_{1}^{2}}{S_{2}^{2}/\sigma_{2}^{2}} \sim F(n_{1}-1, n_{2} - 1)

例题

  1. 设总体 XN(0,1)X\sim \mathcal{N}(0,1)X1,X2,X3,X4,X5X_{1},X_{2},X_{3},X_{4},X_{5} 为来自总体 XX 的简单随机样本,Xˉ,S\bar{X},S 分别为样本均值和样本标准差,则下列结论中正确的是( ) A. XˉN(0,1)B. i=15(XiXˉ)2χ2(5)C. 32X1+X2X32+X42+X52t(3)D. X12+2X22X32+X42+X52F(3,3) \begin{array}{ll} \text{A. }\bar{X}\sim \mathcal{N}(0,1) & \text{B. }\sum\limits_{i=1}^{5}(X_{i}-\bar{X})^{2} \sim \chi^{2}(5) \\ \text{C. }\sqrt{\frac{3}{2}}\frac{X_{1}+X_{2}}{\sqrt{X_{3}^{2}+X_{4}^{2}+X_{5}^{2}}}\sim t(3) & \text{D. }\frac{X_{1}^{2} + 2X_{2}^{2}}{X_{3}^{2}+X_{4}^{2}+X_{5}^{2}}\sim F(3,3) \end{array} XˉN(0,15)i=15(XiXˉ)2=i=15(XiXˉ)212χ2(4)32X1+X2X12+X22+X32=(X1+X2)/2(X12+X22+X32)/3t(3)X2X2不独立X12+2X22χ2(3)X12+2X22X32+X42+X52F(3,3)C \begin{array}{ll} &\bar{X} \sim \mathcal{N}(0, \frac{1}{5}) \\\\ &\sum\limits_{i=1}^{5}(X_{i} - \bar{X})^{2} = \frac{\sum\limits_{i=1}^{5}(X_{i} - \bar{X})^{2}}{1^{2}} \sim \chi^{2}(4) \\\\ &\sqrt{\frac{3}{2}}\frac{X_{1}+X_{2}}{\sqrt{X_{1}^{2}+X_{2}^{2}+X_{3}^{2}}} = \frac{(X_{1}+X_{2})/\sqrt{2}}{\sqrt{(X_{1}^{2}+X_{2}^{2}+X_{3}^{2})/3}} \sim t(3) \\\\ \because & X_{2}\text{同} X_{2} \text{不独立} \\ \therefore & X_{1}^{2}+2X_{2}^{2} \nsim \chi^{2}(3) \\ \therefore & \frac{X_{1}^{2} + 2X_{2}^{2}}{X_{3}^{2}+X_{4}^{2}+X_{5}^{2}}\nsim F(3,3)\\\\ \therefore & \text{选}C \\ \end{array}

results matching ""

    No results matching ""