Section02_依概率收敛

定义

  • Y1,Y2,,Yn,Y_{1},Y_{2},\cdots, Y_{n},\cdots 为一随机变量序列, aa 为常数,若 ϵ>0,limxP{Ynaϵ}=1\forall \epsilon > 0, \lim\limits_{x\to \infty}\mathbb{P}\{\vert Y_{n} -a \vert \le \epsilon\} = 1limnP{Ynaϵ}=0\lim\limits_{n\to \infty}\mathbb{P}\{\vert Y_{n} - a \vert \ge \epsilon \} = 0 则称 YnY_{n} 依概率收敛到 aa,记为 YnPa (n)Y_{n}\xrightarrow{P}a\ (n\to \infty)
    • YnPaY_{n}\xrightarrow{P}a 表明 P{Yn(aϵ,a+ϵ)}\mathbb{P}\{Y_{n}\in (a-\epsilon,a+\epsilon)\} 很大
    • 频率依概率收敛于概率

性质

  • XnPa,YnPbX_{n}\xrightarrow{P}a, Y_{n}\xrightarrow{P}bg(x,y)g(x,y)(a,b)(a,b) 连续,则 g(X,Y)Pg(a,b)g(X,Y)\xrightarrow{P}g(a,b)
    • XnPaXn2Pa2X_{n}\xrightarrow{P}a\Rightarrow X^{2}_{n}\xrightarrow{P}a^{2}

results matching ""

    No results matching ""