Section04_二维均匀分布和二维正态分布

二维均匀分布

  1. 定义f(x,y)={1SG,(x,y)G0,其他f(x,y) = \begin{cases} \frac{1}{S_{\mathbb{G}}}, & (x,y)\in \mathbb{G} \\ 0, & \text{其他} \end{cases},则 (X,Y)(X,Y) 为区域 G\mathbb{G} 上的均匀分布
  2. 求概率 若 DG\mathbb{D}\subset \mathbb{G},则 P{(X,Y)D}=D1SGdσ=SDSG(面积之比) \begin{split} \mathbb{P}\{(X,Y)\in \mathbb{D}\} & = \iint\limits_{\mathbb{D}}\frac{1}{S_{\mathbb{G}}}\cdot d\sigma \\ & = \frac{S_{\mathbb{D}}}{S_{\mathbb{G}}} \quad \text{(面积之比)} \end{split}

二维正态分布 (X,Y)N(μ1,μ2;σ12,σ22;ρ)(X,Y)\sim \mathcal{N}(\mu_{1}, \mu_{2}; \sigma^{2}_{1}, \sigma^{2}_{2}; \rho)

f(x,y)=12πσ12πσ21ρ2×exp{11ρ2[(xμ1)22σ12+(yμ2)22σ22ρxμ1σ1yμ2σ2]} \begin{split} f(x,y) &= \frac{1}{\sqrt{2\pi}\sigma_{1}\sqrt{2\pi}\sigma_{2}\sqrt{1-\rho^{2}}} \times\\ & \exp\bigg\{-\frac{1}{1-\rho^{2}}\bigg[\frac{(x-\mu_{1})^{2}}{2\sigma_{1}^{2}} + \frac{(y-\mu_{2})^{2}}{2\sigma^{2}_{2}} - \rho \frac{x-\mu_{1}}{\sigma_{1}}\frac{y-\mu_{2}}{\sigma_{2}}\bigg]\bigg\} \end{split}

  • 其中 {XN(μ1,σ12)YN(μ2,σ22)ρX,Y的相关系数\begin{cases} X\sim \mathcal{N}(\mu_{1},\sigma_{1}^{2}) \\ Y\sim \mathcal{N}(\mu_{2},\sigma_{2}^{2}) \\ \rho \text{为}X,Y \text{的相关系数} \end{cases}
    • ρ=0\rho = 0,则 f(x,y)=12πσ12πσ2×exp[(xμ1)22σ12(yμ1)22σ22]=fX(x)fY(y)f(x,y) = \frac{1}{\sqrt{2\pi}\sigma_{1}\sqrt{2\pi}\sigma_{2}}\times \exp[- \frac{(x-\mu_{1})^{2}}{2\sigma_{1}^{2}}-\frac{(y-\mu_{1})^{2}}{2\sigma_{2}^{2}}]=f_{X}(x)f_{Y}(y)
    • 故若 XN(μ1,σ12),YN(μ2,σ22)X\sim \mathcal{N}(\mu_{1},\sigma_{1}^{2}), Y\sim \mathcal{N}(\mu_{2},\sigma_{2}^{2}),且 X,YX,Y 独立,则 (X,Y)N(μ1,μ2;σ12,σ22;0)(X,Y)\sim \mathcal{N}(\mu_{1},\mu_{2};\sigma_{1}^{2},\sigma_{2}^{2};0)

results matching ""

    No results matching ""