Section02_方差

基本概念

定义

  • DXDXD(X)=E(XEX)20D(X) = E(X-EX)^{2}\ge 0DXDX 为随机变量 XX 的方差,DX\sqrt{DX}XX 的标准差或均方差

计算

  • DX=EX2[EX]2DX = EX^{2} - [EX]^{2}
    • EX2[EX]2EX^{2}\le [EX]^{2}
  • 变形 EX2=[EX]2+DXEX^{2} = [EX]^{2} + DX
    • +x22πex22dx=XN(0,1)EX2=DX+[EX]2=1\displaystyle \int_{-\infty}^{+\infty}\frac{x^{2}}{\sqrt{2\pi}}e^{-\frac{x^{2}}{2}}\cdot dx \xlongequal{X\sim \mathcal{N}(0,1)} EX^{2} = DX + [EX]^{2} = 1

性质

  1. D(c)=0,c为常数D(c) = 0,\quad c \text{为常数}
  2. D(aX)=a2DX; D(X)=DX; D(aX+b)=a2DXD(aX) = a^{2}DX;\ D(-X) = DX;\ D(aX+b) = a^{2}DX
  3. X,YX,Y 相独立,则 D(X±Y)=DX+DYD(X\pm Y) = DX + DY
  4. E(XEX)2=DXE(Xt)2E(X-EX)^{2} =DX\le E(X-t)^{2}

results matching ""

    No results matching ""