Section03_常见分布的期望和方差

分布 分布律或概率密度 EXEX DXDX
010-1分布 X(011pp)X\sim \left( \begin{matrix} 0 & 1 \\ 1-p & p \end{matrix} \right) pp p(1p)p(1-p)
二项分布 P{X=k}=Cnkpk(1p)nk,k=1,2,3,\mathbb{P}\{X=k\} = C_{n}^{k}p^{k}(1-p)^{n-k},\quad k = 1,2,3,\cdots npnp np(1p)np(1-p)
泊松分布 P{X=k}=λkk!eλ,k=0,1,2,\mathbb{P}\{X=k\} = \frac{\lambda^{k}}{k!}e^{-\lambda}, \quad k = 0,1,2,\cdots λ\lambda λ\lambda
几何分布 P{X=k}=(1p)k1p,k=1,2,\mathbb{P}\{X= k\} = (1-p)^{k-1}p,\quad k=1,2,\cdots 1p\frac{1}{p} 1pp2\frac{1-p}{p^{2}}
均匀分布 fX(x)={1ba,a<x<b0,其他f_{X}(x) = \begin{cases} \frac{1}{b-a}, & a < x < b \\ 0, & \text{其他} \end{cases} a+b2\frac{a+b}{2} (ba)212\frac{(b-a)^{2}}{12}
指数分布 fX(x)={λeλx,x>00,x0f_{X}(x) = \begin{cases} \lambda e^{-\lambda x}, & x >0 \\ 0,& x \le 0 \end{cases} 1λ\frac{1}{\lambda} 1λ2\frac{1}{\lambda^{2}}
正态分布 fX(x)=12πσe(xμ)22σ2f_{X}(x) = \frac{1}{\sqrt{2\pi}\sigma}e^{-\frac{(x-\mu)^{2}}{2\sigma^{2}}} μ\mu σ2\sigma^{2}

Proof: 二项式分布的 EX,DXEX, DX n次独立重复实验中,事件A发生的次数XB(n,p),p=P(A)xi={0,i次实验A不发生1,i次实验A发生X=x1+x2+xnEX=E(x1+x2++xn)=独立Ex1+Ex2++Exn=npDX=D(x1+x2++xn)=独立Dx1+Dx2++Dxn=np(1p) \begin{array}{ll} & n\text{次独立重复实验中,事件}A \text{发生的次数} X\sim B(n,p), p = \mathbb{P}(A) \\ & \text{计} x_{i} = \begin{cases} 0, & \text{第}i \text{次实验} A \text{不发生} \\ 1, & \text{第}i \text{次实验} A \text{发生} \end{cases} \\ & \text{则} X = x_{1} + x_{2} + \cdots x_{n} \\ \therefore & EX = E(x_{1}+ x_{2} + \cdots + x_{n}) \\ & \xlongequal{\text{独立}} Ex_{1} + Ex_{2} + \cdots + Ex_{n} =np \\ & DX = D(x_{1} + x_{2} + \cdots + x_{n}) \\ & \xlongequal{\text{独立}}Dx_{1} + Dx_{2} + \cdots + Dx_{n} = np(1-p) \end{array}

results matching ""

    No results matching ""