Section01_数学期望

定义

离散型

  • P{X=xi}=pi,i=1,2,\mathbb{P}\{X=x_{i}\} = p_{i},\quad i=1,2,\cdots,若 ixipi\sum_{i}\limits^{\infty}x_{i}p_{i} 绝对收敛(指 ixipi\sum\limits_{i}^{\infty}\vert x_{i} \vert p_{i} 收敛),则称 ixipi\sum\limits_{i}^{\infty}x_{i}p_{i} 为随机变量的数学期望,记为 EXEXE(X)E(X)

常见离散型分布期望推导

  1. X(011pp)X\sim \left( \begin{matrix} 0 & 1 \\ 1-p & p \end{matrix} \right),求 EXEX EX=ixipiEX=0×(1p)+1×p=p \begin{array}{ll} \because & EX = \sum\limits_{i}^{\infty}x_{i}p_{i} \\ \therefore & EX = 0\times (1-p) + 1\times p = p \\ \end{array}
  2. XP(λ)X\sim P(\lambda),求 EXEX P{X=k}=λkk!eλ,k=0,1,2,EX=ixipiEX=k=0kλkk!eλ=k=1kλkk!eλ=eλk=1λk(k1)!=λeλk=1λk1(k1)!=λeλeλ=λ \begin{array}{ll} \because & \mathbb{P}\{X=k\} = \frac{\lambda^{k}}{k!}e^{-\lambda}, \quad k = 0,1,2,\cdots \\ & EX = \sum\limits_{i}^{\infty}x_{i}p_{i} \\ \therefore & EX = \sum\limits_{k=0}^{\infty}k\cdot\frac{\lambda^{k}}{k!}e^{-\lambda} = \sum\limits_{k=1}^{\infty}k\cdot \frac{\lambda^{k}}{k!}e^{-\lambda} \\ & = e^{-\lambda}\sum\limits_{k=1}^{\infty}\frac{\lambda^{k}}{(k-1)!} \\ & = \lambda e^{-\lambda} \sum\limits_{k=1}^{\infty}\frac{\lambda^{k-1}}{(k-1)!} \\ & = \lambda e^{-\lambda}e^{\lambda} \\ & = \lambda \end{array}
  3. X几何分布X\sim \text{几何分布},求 EXEX P{X=k}=(1p)k1p,k=1,2,3,EX=ixipiEX=k=1k(1p)k1p=pk=1k(1p)k1=1p=xpk=1kxk1=pk=1(xk)=p(k=1xk)=p(x1x)=p(1+11x)=p1(1x)2=p1p2=1p \begin{array}{ll} \because & \mathbb{P}\{X=k\} = (1-p)^{k-1}p,\quad k = 1,2,3,\cdots \\ & EX = \sum\limits_{i}^{\infty}x_{i}p_{i} \\ \therefore & EX = \sum\limits_{k=1}^{\infty} k(1-p)^{k-1}p \\ & = p\sum\limits_{k=1}^{\infty} k (1-p)^{k-1} \\ & \xlongequal{1-p = x}p \sum\limits_{k=1}^{\infty}kx^{k-1} = p\sum\limits_{k=1}^{\infty} (x^{k})' \\ & = p \bigg(\sum\limits_{k=1}^{\infty}x^{k}\bigg)' = p(\frac{x}{1-x})' = p (-1 + \frac{1}{1-x})' \\ & = p \frac{1}{(1-x)^{2}} = p \frac{1}{p^{2}} = \frac{1}{p} \end{array}

连续型

  • XfX(x)X\sim f_{X}(x),若 +xfX(x)dx\displaystyle \int_{-\infty}^{+\infty}\vert x \vert f_{X}(x)\cdot dx 收敛,则 EX=+xfX(x)dx\displaystyle EX = \int_{-\infty}^{+\infty}xf_{X}(x)\cdot dx 为随机变量的数学期望

常见连续型分布的期望推导

  1. XU(a,b)X\sim U(a,b),求 EXEX fX(x)={1ba,a<x<b0,其他EX=+xfX(x)dxEX=abxbadx=1ba(x22)ab=a+b2 \begin{array}{ll} \because & f_{X}(x) = \begin{cases} \frac{1}{b-a}, & a < x <b \\ 0, & \text{其他} \end{cases} \\ & \displaystyle EX = \int_{-\infty}^{+\infty}xf_{X}(x)\cdot dx \\ \therefore & \displaystyle EX = \int_{a}^{b}\frac{x}{b-a}\cdot dx \\ & \displaystyle = \frac{1}{b-a}\bigg(\left.\frac{x^{2}}{2}\bigg)\right\vert^{b}_{a} \\ & \displaystyle = \frac{a+b}{2} \end{array}
  2. XE(λ)X\sim E(\lambda),求 EXEX fX(x)={λeλx,x>00,x0EX=+xfX(x)dxmethod 1EX=0xλeλxdx=0xdeλx=[(xeλx)00eλxdx]=1λeλx0=1λmethod 2 Γ(z)=0xz1exdx=zN+(z1)!EX=0xλeλxdx=1λ0λxeλxdλx=1!λ=1λ \begin{array}{ll} \because & f_{X}(x) = \begin{cases} \lambda e^{-\lambda x}, & x>0 \\ 0, & x \le 0 \end{cases} \\ & \displaystyle EX = \int_{-\infty}^{+\infty}xf_{X}(x)\cdot dx \\ \\ & \text{method 1} \\ \therefore & \displaystyle EX = \int_{0}^{\infty} x \lambda e^{-\lambda x} \cdot dx = -\int_{0}^{\infty}x \cdot de^{-\lambda x}\\ & \displaystyle = -[(xe^{-\lambda x})\vert^{\infty}_{0} - \int_{0}^{\infty}e^{-\lambda x}\cdot dx]\\ & \displaystyle = \left.\frac{1}{\lambda}e^{-\lambda x}\right\vert^{\infty}_{0} = \frac{1}{\lambda} \\\\ & \text{\color{#D0104C}{method 2} }\displaystyle \Gamma(z) = \int_{0}^{\infty}x^{z-1}e^{-x}\cdot dx \xlongequal{z\in \mathbb{N}^{+}} (z-1)! \\ & \displaystyle EX = \int_{0}^{\infty}x \lambda e^{-\lambda x}\cdot dx = \frac{1}{\lambda}\int_{0}^{\infty}\lambda xe^{-\lambda x}\cdot d\lambda x \\ & \displaystyle = \frac{1!}{\lambda} = \frac{1}{\lambda} \end{array}
    • XX 服从均值为 θ\theta 的指数分布,则:fX(x)={1θexθ,x>00,x0f_{X}(x) = \begin{cases} \frac{1}{\theta}e^{-\frac{x}{\theta}}, & x>0 \\ 0, & x\le 0 \end{cases}
  3. XN(μ,σ2)X\sim \mathcal{N}(\mu,\sigma^{2}),求 EXEX fX(x)=12πσe(xμ)22σ2dxEX=+xfX(x)dxEX=+x12πσe(xμ)22σ2dx=xμσ=t+(σt+μ)12πσet22d(σt+μ)=μ+12πet22dt++σt2πet22dt=μ \begin{array}{ll} \because & \displaystyle f_{X}(x) = \frac{1}{\sqrt{2\pi} \sigma}e^{-\frac{(x-\mu)^{2}}{2\sigma^{2}}}\cdot dx\\ & \displaystyle EX = \int_{-\infty}^{+\infty}xf_{X}(x)\cdot dx\\ \therefore & \displaystyle EX = \int_{-\infty}^{+\infty}x \frac{1}{\sqrt{2\pi}\sigma}e^{-\frac{(x-\mu)^{2}}{2\sigma^{2}}}\cdot dx \\ & \displaystyle \xlongequal{\frac{x-\mu}{\sigma} = t} \int_{-\infty}^{+\infty} (\sigma t + \mu)\frac{1}{\sqrt{2\pi}\sigma}e^{-\frac{t^{2}}{2}} \cdot d(\sigma t + \mu) \\ & \displaystyle = \mu\int_{-\infty}^{+\infty} \frac{1}{\sqrt{2\pi}}e^{-\frac{t^{2}}{2}}\cdot dt + \int_{-\infty}^{+\infty}\frac{\sigma t}{\sqrt{2\pi}}e^{-\frac{t^{2}}{2}}\cdot dt \\ & = \mu \end{array}

Eg(X)Eg(X)Eg(X,Y)Eg(X,Y)

Eg(X)Eg(X)

  • Eg(X)={ig(xi)P{X=xi}+g(x)fX(x)dxEg(X) = \begin{cases} \displaystyle \sum_{i}g(x_{i})\mathbb{P}\{X= x_{i}\} \\ \displaystyle \int_{-\infty}^{+\infty}g(x)f_{X}(x)\cdot dx \end{cases}
    • X(1011/31/31/3)X\sim \left( \begin{matrix} -1 & 0 & 1\\ 1/3 & 1/3 & 1/3 \end{matrix} \right)EX2EX^{2}
      • XX 的分布求 EX2=(1)2×13+02×13+12×13=23EX^{2} = (-1)^{2}\times \frac{1}{3} + 0^{2}\times \frac{1}{3} + 1^{2}\times \frac{1}{3} = \frac{2}{3}
      • X2X^{2} 的分布求 X2(011/32/3)EX2=0×13+1×23=23X^{2}\sim \left( \begin{matrix} 0 & 1 \\ 1/3 & 2/3 \end{matrix} \right)\Rightarrow EX^{2} = 0\times \frac{1}{3} + 1\times \frac{2}{3} = \frac{2}{3}
    • XE(λ)X\sim E(\lambda),求 EX2EX^{2}
      • EX2=0x2λeλxdx=1λ20(λx)2eλxdλx=21λ2\displaystyle EX^{2} = \int_{0}^{\infty}x^{2}\lambda e^{-\lambda x}\cdot dx = \frac{1}{\lambda^{2}}\int_{0}^{\infty}(\lambda x)^{2}e^{-\lambda x}\cdot d\lambda x = 2 \frac{1}{\lambda^{2}}
    • 连续型时,由 fX(x)f_{X}(x)Y=X2Y=X^{2} 的密度 fY(y)f_{Y}(y) 为第二章的一个难点,一般不用 fY(y)f_{Y}(y)EYEY

求常见分布的 EX2EX^{2}

  1. X(011pp)X\sim \left( \begin{matrix} 0 & 1 \\ 1-p & p \end{matrix} \right),求 EX2EX^{2} EX2=ixi2pi=02×(1p)+12×p=p \begin{array}{ll} & \displaystyle EX^{2} = \sum_{i}^{\infty}x_{i}^{2}p_{i} = 0^{2}\times (1-p) + 1^{2}\times p = p \end{array}
  2. XP(λ)X\sim P(\lambda),求 EX2EX^{2} EX2=ixi2pi=k=0k2λkk!eλ=eλk=1k2λkk!=eλk=1[k(k1)λkk!+kλkk!]=λ2eλk=2λk2(k2)!+λeλk=1λk1(k1)!=λ2+λ \begin{array}{ll} & \displaystyle EX^{2} = \sum_{i}^{\infty}x_{i}^{2}p_{i} = \sum_{k=0}^{\infty}k^{2}\frac{\lambda^{k}}{k!}e^{-\lambda} = e^{-\lambda}\sum_{k=1}^{\infty}k^{2}\frac{\lambda^{k}}{k!} \\ & \displaystyle = e^{-\lambda}\sum_{k=1}^{\infty}\bigg[k(k-1)\frac{\lambda^{k}}{k!} + k \frac{\lambda^{k}}{k!} \bigg] \\ & \displaystyle = \lambda^{2}e^{-\lambda} \sum_{k=2}^{\infty}\frac{\lambda^{k-2}}{(k-2)!} + \lambda e^{-\lambda} \sum_{k=1}^{\infty} \frac{\lambda^{k-1}}{(k-1)!} \\ & = \lambda^{2} + \lambda \end{array}
  3. X几何分布X\sim \text{几何分布},求 EX2EX^{2} EX2=ixi2pi=k=1k2(1p)k1p=pk=1[k(k+1)(1p)k1k(1p)k1]=x=1pp[k=1(xk+1)k=1(xk)]=p[(k=1xk+1)(k=1xk)]=p[(x21x)(x1x)]=p[2(1x)31(1x)2]=2pp2 \begin{array}{ll} & \displaystyle EX^{2} = \sum_{i}^{\infty}x_{i}^{2}p_{i} = \sum_{k=1}^{\infty}k^{2}(1-p)^{k-1}p \\ & \displaystyle = p\sum_{k=1}^{\infty}[k(k+1)(1-p)^{k-1} - k (1-p)^{k-1}] \\ & \displaystyle \xlongequal{x = 1-p} p\bigg[ \sum_{k=1}^{\infty} (x^{k+1})'' - \sum_{k=1}^{\infty}(x^{k})'\bigg] \\ & \displaystyle = p\bigg[\bigg(\sum_{k=1}^{\infty}x^{k+1}\bigg)'' - \bigg(\sum_{k=1}^{\infty}x^{k}\bigg)'\bigg] \\ & \displaystyle = p\bigg[\bigg(\frac{x^{2}}{1-x}\bigg)'' - \bigg(\frac{x}{1-x}\bigg)'\bigg] \\ & \displaystyle = p\bigg[\frac{2}{(1-x)^{3}} - \frac{1}{(1-x)^{2}}\bigg]\\ & \displaystyle = \frac{2-p}{p^{2}} \end{array}
  4. XU(a,b)X\sim U(a,b),求 EX2EX^{2} EX2=+x2fX(x)dx=1baabx2dx=1ba×x33ab=b3a33(ba)=(ba)(a2+b2+ab)3(ba)=a2+b2+ab3 \begin{array}{ll} & \displaystyle EX^{2} = \int_{-\infty}^{+\infty}x^{2}f_{X}(x)\cdot dx = \frac{1}{b-a} \int_{a}^{b}x^{2}\cdot dx \\ & \displaystyle = \frac{1}{b-a} \times \left.\frac{x^{3}}{3}\right\vert_{a}^{b} = \frac{b^{3}-a^{3}}{3(b-a)} \\ & \displaystyle = \frac{(b-a)(a^{2} + b^{2} +ab)}{3(b-a)} = \frac{a^{2} + b^{2} + ab}{3} \end{array}
  5. XE(λ)X\sim E(\lambda),求 EX2EX^{2} EX2=+x2fX(x)dx=0x2λeλxdx=1λ20(λx)2eλxdλx=2λ2 \begin{array}{ll} & \displaystyle EX^{2} = \int_{-\infty}^{+\infty}x^{2}f_{X}(x)\cdot dx = \int_{0}^{\infty} x^{2}\lambda e^{-\lambda x}\cdot dx \\ & \displaystyle = \frac{1}{\lambda^{2}}\int_{0}^{\infty}(\lambda x)^{2}e^{-\lambda x}\cdot d \lambda x = \frac{2}{\lambda^{2}} \end{array}
  6. XN(μ,σ2)X\sim \mathcal{N}(\mu,\sigma^{2}),求 EX2EX^{2} EX2=+x2fX(x)dx=+x212πσe(xμ)22σ2=t=xμσ+(σtμ)212πet22dt=μ2+12πet22dt+σ2+t22πet22dt2σμ+t2πet22dt=μ2σ2+t2πdet22=μ2σ2(tet22++12πet22dt)=μ2+σ2 \begin{array}{ll} & \displaystyle EX^{2} = \int_{-\infty}^{+\infty}x^{2}f_{X}(x)\cdot dx = \int_{-\infty}^{+\infty} x^{2}\frac{1}{\sqrt{2\pi}\sigma}e^{-\frac{(x-\mu)^{2}}{2\sigma^{2}}} \\ & \displaystyle \xlongequal{t = \frac{x-\mu}{\sigma}} \int_{-\infty}^{+\infty} (\sigma t - \mu)^{2}\frac{1}{\sqrt{2\pi}}e^{- \frac{t^{2}}{2}}\cdot dt \\ & \displaystyle = \mu^{2}\int_{-\infty}^{+\infty}\frac{1}{\sqrt{2\pi}}e^{-\frac{t^{2}}{2}}\cdot dt + \sigma^{2} \int_{-\infty}^{+\infty}\frac{t^{2}}{\sqrt{2\pi}}e^{-\frac{t^{2}}{2}}\cdot dt- 2\sigma\mu \int_{-\infty}^{+\infty}\frac{t}{\sqrt{2\pi}}e^{-\frac{t^{2}}{2}}\cdot dt \\ & \displaystyle = \mu^{2} - \sigma^{2}\int_{-\infty}^{+\infty}\frac{t}{\sqrt{2\pi}} \cdot d e^{-\frac{t^{2}}{2}} \\ & \displaystyle = \mu^{2} - \sigma^{2}\bigg(te^{-\frac{t^{2}}{2}}\vert^{+\infty}_{-\infty} - \int_{-\infty}^{+\infty}\frac{1}{\sqrt{2\pi}}e^{-\frac{t^{2}}{2}}\cdot dt\bigg) \\ & = \mu^{2} + \sigma^{2} \end{array}

Eg(X,Y)Eg(X,Y)

  • Eg(X,Y)={ijg(xi,yj)P{X=xi,Y=yj}++g(x,y)f(x,y)dxdyEg(X,Y) = \begin{cases} \displaystyle \sum_{i}^{}\sum_{j}^{}g(x_{i},y_{j}) \mathbb{P}\{X=x_{i}, Y=y_{j}\} \\ \displaystyle \int_{-\infty}^{+\infty}\int_{-\infty}^{+\infty}g(x,y)f(x,y)\cdot dxdy \end{cases}

例题

  1. 设二维随机变量 (X,Y)(X,Y) 的分布律如下所示,分别计算E(X),E(XY)E(X),E(XY) (X,Y)(0,0)(0,1)(1,0)(1,1)P0.20.10.40.3 \begin{array}{c|cccc} (X,Y) & (0,0) & (0,1) & (1,0) & (1,1) \\ \hline P & 0.2 & 0.1 & 0.4 & 0.3 \end{array} E(X)=0×0.2+0×0.1+1×0.4+1×0.3=0.7E(XY)=0×0.2+0×0.1+0×0.4+1×0.3=0.3 \begin{array}{ll} E(X) = 0\times 0.2 + 0\times 0.1 + 1\times 0.4 + 1\times 0.3 = 0.7 \\ E(XY) = 0\times 0.2 + 0\times 0.1 + 0\times 0.4 + 1\times 0.3 = 0.3 \end{array}
  2. 设随机变量 XX 的概率密度为 fX(x)={1,12<x<120,其他f_{X}(x) = \begin{cases} 1, & -\frac{1}{2} < x < \frac{1}{2} \\ 0, & \text{其他} \end{cases},设 Y=cosxY = \cos x,试分别计算 E(X),[EX]2,EX2,E(XY)E(X), [E \vert X \vert]^{2}, EX^{2}, E(XY) E(X)=+xfX(x)dx=1212xdx=x221212=0[EX]2=[+xfX(x)dx]2=[2012xdx]2=116EX2=1212x2dx=112E(XY)=1212xcosxdx=0 \begin{array}{ll} & \displaystyle E(X) = \int_{-\infty}^{+\infty}xf_{X}(x)\cdot dx = \int_{-\frac{1}{2}}^{\frac{1}{2}}x\cdot dx = \left.\frac{x^{2}}{2}\right\vert^{\frac{1}{2}}_{-\frac{1}{2}} = 0\\ & \displaystyle [E \vert X \vert]^{2} = \bigg[\int_{-\infty}^{+\infty}\vert x \vert f_{X}(x)\cdot dx\bigg]^{2} = \bigg[2\int_{0}^{\frac{1}{2}}x\cdot dx\bigg]^{2} = \frac{1}{16} \\ & \displaystyle EX^{2} = \int_{-\frac{1}{2}}^{\frac{1}{2}} x^{2}\cdot dx = \frac{1}{12} \\ & \displaystyle E(XY) = \int_{-\frac{1}{2}}^{\frac{1}{2}}x\cos x\cdot dx = 0 \end{array}
      1. EXEXE \vert X \vert \ne \vert EX \vert
      2. EX2(EX)2EX^{2} \ne (EX)^{2}
  3. 设二维随机变量 (X,Y)(X,Y) 的概率密度为 f(x,y)={1π,x2+y210,其他f(x,y) = \begin{cases} \frac{1}{\pi}, & x^{2} + y^{2} \le 1 \\ 0, & \text{其他} \end{cases},分别计算 EY2,EXYEY^{2},EXY EY2=x2+y21y2f(x,y)dσ=x=rcosθy=rsinθr1r2sin2θf(x,y)rdrdθ=01r3drππsin2θπdθ=401r3dr0π2sin2θπ=01r3dr=14EXY=x2+y21xyf(x,y)dσ=x=rcosθy=rsinθr1r2cosθsinθrdrdθ=01r3drππcosθsinθdθ=0 \begin{array}{ll} & \displaystyle EY^{2} = \iint\limits_{x^{2}+y^{2}\le 1}y^{2}f(x,y)\cdot d\sigma \\ & \displaystyle \xlongequal{\substack{x = r\cos \theta\\ y = r\sin \theta}} \iint\limits_{r\le 1}r^{2}\sin^{2}\theta f(x,y)\cdot rdrd\theta \\ & \displaystyle = \int_{0}^{1}r^{3} \cdot dr \int_{-\pi}^{\pi}\frac{\sin^{2}\theta}{\pi}\cdot d\theta = 4 \int_{0}^{1}r^{3}\cdot dr \int_{0}^{\frac{\pi}{2}}\frac{\sin^{2}\theta}{\pi} \\ & \displaystyle = \int_{0}^{1}r^{3}\cdot dr = \frac{1}{4} \\\\ & \displaystyle EXY = \iint\limits_{x^{2}+y^{2}\le 1} xy f(x,y)\cdot d\sigma \\ & \displaystyle \xlongequal{\substack{x = r\cos \theta\\ y = r\sin \theta}} \iint\limits_{r\le 1} r^{2}\cos \theta\sin \theta\cdot rdrd\theta \\ & \displaystyle = \int_{0}^{1}r^{3}\cdot dr \int_{-\pi}^{\pi}\cos \theta\sin \theta\cdot d\theta = 0 \end{array}
    • 本题中 EXY=EXEYEXY = EX\cdot EY,但 X,YX,Y 并不独立;但当 X,YX,Y 独立时,EXY=EXEYEXY = EX\cdot EY

期望的性质

  1. E(c)=c,c为常数E(c) = c,\quad c \text{为常数}
  2. E(aX)=aEX,a为常数E(aX) = aEX,\quad a \text{为常数}
  3. E(X+Y)=EX+EY;E(aX+bY+c)=aEX+bEY+cE(X+Y) = EX + EY; E(aX+bY + c) = aEX + bEY + c
  4. EXY=EXEYX,Y不相关(无线性关系)X,Y独立(无任何关系)EXY = EX\cdot EY \Leftrightarrow X,Y \text{不相关(无线性关系)}\substack{\nrightarrow\\\rightarrow} X,Y \text{独立(无任何关系)}
  5. XcEXcX\ge c\Rightarrow EX\ge c
  6. X,YX,Y 独立,则 X2X^{2}Y2Y^{2} 仍独立 EX2Y2=EX2EY2EX^{2}Y^{2} = EX^{2}\cdot EY^{2}

results matching ""

    No results matching ""