Section04_协方差
基本概念
定义
C o v ( X , Y ) = E [ ( X − E X ) ( Y − E Y ) ]
\mathrm{Cov}(X,Y) = E[(X-EX)(Y-EY)] \\
Cov ( X , Y ) = E [( X − EX ) ( Y − E Y )]
特别地 C o v ( X , X ) = E [ ( X − E X ) ( X − E X ) ] = D X \mathrm{Cov}(X,X) = E[(X-EX)(X-EX)] = DX Cov ( X , X ) = E [( X − EX ) ( X − EX )] = D X
计算
C o v ( X , Y ) = E X Y − E X ⋅ E Y = ρ X Y ⋅ D X D Y
\mathrm{Cov}(X,Y) = EXY - EX\cdot EY = \rho_{XY}\cdot \sqrt{DX}\sqrt{DY}
Cov ( X , Y ) = EX Y − EX ⋅ E Y = ρ X Y ⋅ D X D Y
注 E X Y = { ∑ i ∑ j x i y j P { X = x i , Y = y j } ∫ − ∞ + ∞ ∫ − ∞ + ∞ x y f ( x , y ) ⋅ d x d y EXY = \begin{cases} \displaystyle \sum_{i}^{}\sum_{j}^{}x_{i}y_{j}\mathbb{P}\{X=x_{i}, Y = y_{j}\} \\ \displaystyle \int_{-\infty}^{+\infty}\int_{-\infty}^{+\infty}xyf(x,y)\cdot dxdy \end{cases} EX Y = ⎩ ⎨ ⎧ i ∑ j ∑ x i y j P { X = x i , Y = y j } ∫ − ∞ + ∞ ∫ − ∞ + ∞ x y f ( x , y ) ⋅ d x d y
性质
C o v ( X , c ) = 0 ; c 为常数 \mathrm{Cov}(X,c) = 0; \quad c\text{为常数} Cov ( X , c ) = 0 ; c 为常数
特别地 C o v ( X , E Y ) = 0 \mathrm{Cov}(X, EY) = 0 Cov ( X , E Y ) = 0
C o v ( X , Y ) = C o v ( Y , X ) \mathrm{Cov}(X,Y) = \mathrm{Cov}(Y,X) Cov ( X , Y ) = Cov ( Y , X )
C o v ( a X , b Y ) = a b C o v ( X , Y ) \mathrm{Cov}(aX,bY) = ab \mathrm{Cov}(X,Y) Cov ( a X , bY ) = ab Cov ( X , Y )
C o v ( X 1 + X 2 , Y ) = C o v ( X 1 , Y ) + C o v ( X 2 , Y ) \mathrm{Cov}(X_{1}+X_{2},Y) = \mathrm{Cov}(X_{1},Y) + \mathrm{Cov}(X_{2},Y) Cov ( X 1 + X 2 , Y ) = Cov ( X 1 , Y ) + Cov ( X 2 , Y )
特别地 C o v ( X + Y , X − Y ) = C o v ( X , X ) + C o v ( Y , X ) − C o v ( X , Y ) − C o v ( Y , Y ) = D X − D Y \mathrm{Cov}(X+Y,X-Y) = \mathrm{Cov}(X,X) + \mathrm{Cov}(Y,X) - \mathrm{Cov}(X,Y) - \mathrm{Cov}(Y,Y) = DX-DY Cov ( X + Y , X − Y ) = Cov ( X , X ) + Cov ( Y , X ) − Cov ( X , Y ) − Cov ( Y , Y ) = D X − D Y
D ( X ± Y ) = D X + D Y ± 2 C o v ( X , Y ) D(X\pm Y) = DX + DY \pm 2\mathrm{Cov}(X,Y) D ( X ± Y ) = D X + D Y ± 2 Cov ( X , Y )
例题
设二维随机变量 ( X , Y ) (X,Y) ( X , Y ) 的概率分布为
Y = 0 Y = 1 Y = 2 X = − 1 0.1 0.1 b X = 1 a 0.1 0.1
\begin{array}{c | ccc}
& Y = 0 & Y=1 & Y=2 \\
\hline
X = -1 & 0.1 & 0.1 & b\\
X = 1 & a & 0.1 & 0.1
\end{array}
X = − 1 X = 1 Y = 0 0.1 a Y = 1 0.1 0.1 Y = 2 b 0.1
若事件 { max { X , Y } = 2 } \{\max\{X,Y\}=2\} { max { X , Y } = 2 } 和 { min { X , Y } = 1 } \{\min\{X,Y\} = 1\} { min { X , Y } = 1 } 相互独立,则 C o v ( X , Y ) = \mathrm{Cov}(X,Y) = Cov ( X , Y ) = ( )
a. -0.6
b. -0.36
c. 0
d. 0.48
∵ { max { X , Y } = 2 } 与 { min { X , Y } = 1 } 相互独立 ∴ P { max { X , Y } = 2 , min { X , Y } = 1 } = P { max { X , Y } = 2 } P { min { X , Y } = 1 } ∴ P { X = 1 , Y = 2 } = P { Y = 2 } P { X = 1 , Y ≥ 1 } ∴ 0.1 = ( 0.1 + b ) ( 0.1 + 0.1 ) ∴ b = 0.4 , a = 0.2 ∵ C o v ( X , Y ) = E X Y − E X ⋅ E Y = − 2 × 0.4 + 2 × 0.1 − ( − 0.6 + 0.4 ) ( 0.2 + 2 × 0.5 ) = − 0.36
\begin{array}{ll}
\because & \{\max\{X,Y\}=2\} \text{与} \{\min\{X,Y\} = 1\} \text{相互独立} \\
\therefore & \mathbb{P}\{\max\{X,Y\}=2,\min\{X,Y\} = 1\} = \mathbb{P}\{\max\{X,Y\} = 2\}\mathbb{P}\{\min\{X,Y\} = 1\} \\
\therefore & \mathbb{P}\{X=1,Y=2\} = \mathbb{P}\{Y =2\}\mathbb{P}\{X=1, Y \ge 1\} \\
\therefore & 0.1 = (0.1+b)(0.1 + 0.1) \\
\therefore & b = 0.4,a=0.2 \\
\because & \mathrm{Cov}(X,Y) = EXY - EX\cdot EY \\
& = -2\times 0.4 + 2\times 0.1 - (-0.6 + 0.4)(0.2 + 2\times 0.5) \\
& = -0.36
\end{array}
∵ ∴ ∴ ∴ ∴ ∵ { max { X , Y } = 2 } 与 { min { X , Y } = 1 } 相互独立 P { max { X , Y } = 2 , min { X , Y } = 1 } = P { max { X , Y } = 2 } P { min { X , Y } = 1 } P { X = 1 , Y = 2 } = P { Y = 2 } P { X = 1 , Y ≥ 1 } 0.1 = ( 0.1 + b ) ( 0.1 + 0.1 ) b = 0.4 , a = 0.2 Cov ( X , Y ) = EX Y − EX ⋅ E Y = − 2 × 0.4 + 2 × 0.1 − ( − 0.6 + 0.4 ) ( 0.2 + 2 × 0.5 ) = − 0.36