Section04_协方差

基本概念

定义

Cov(X,Y)=E[(XEX)(YEY)] \mathrm{Cov}(X,Y) = E[(X-EX)(Y-EY)] \\

  • 特别地 Cov(X,X)=E[(XEX)(XEX)]=DX\mathrm{Cov}(X,X) = E[(X-EX)(X-EX)] = DX

计算

Cov(X,Y)=EXYEXEY=ρXYDXDY \mathrm{Cov}(X,Y) = EXY - EX\cdot EY = \rho_{XY}\cdot \sqrt{DX}\sqrt{DY}

  • EXY={ijxiyjP{X=xi,Y=yj}++xyf(x,y)dxdyEXY = \begin{cases} \displaystyle \sum_{i}^{}\sum_{j}^{}x_{i}y_{j}\mathbb{P}\{X=x_{i}, Y = y_{j}\} \\ \displaystyle \int_{-\infty}^{+\infty}\int_{-\infty}^{+\infty}xyf(x,y)\cdot dxdy \end{cases}

性质

  1. Cov(X,c)=0;c为常数\mathrm{Cov}(X,c) = 0; \quad c\text{为常数}
    • 特别地 Cov(X,EY)=0\mathrm{Cov}(X, EY) = 0
  2. Cov(X,Y)=Cov(Y,X)\mathrm{Cov}(X,Y) = \mathrm{Cov}(Y,X)
  3. Cov(aX,bY)=abCov(X,Y)\mathrm{Cov}(aX,bY) = ab \mathrm{Cov}(X,Y)
  4. Cov(X1+X2,Y)=Cov(X1,Y)+Cov(X2,Y)\mathrm{Cov}(X_{1}+X_{2},Y) = \mathrm{Cov}(X_{1},Y) + \mathrm{Cov}(X_{2},Y)
    • 特别地 Cov(X+Y,XY)=Cov(X,X)+Cov(Y,X)Cov(X,Y)Cov(Y,Y)=DXDY\mathrm{Cov}(X+Y,X-Y) = \mathrm{Cov}(X,X) + \mathrm{Cov}(Y,X) - \mathrm{Cov}(X,Y) - \mathrm{Cov}(Y,Y) = DX-DY
  5. D(X±Y)=DX+DY±2Cov(X,Y)D(X\pm Y) = DX + DY \pm 2\mathrm{Cov}(X,Y)

例题

  1. 设二维随机变量 (X,Y)(X,Y) 的概率分布为 Y=0Y=1Y=2X=10.10.1bX=1a0.10.1 \begin{array}{c | ccc} & Y = 0 & Y=1 & Y=2 \\ \hline X = -1 & 0.1 & 0.1 & b\\ X = 1 & a & 0.1 & 0.1 \end{array}
    • 若事件 {max{X,Y}=2}\{\max\{X,Y\}=2\}{min{X,Y}=1}\{\min\{X,Y\} = 1\} 相互独立,则 Cov(X,Y)=\mathrm{Cov}(X,Y) =( ) a. -0.6 b. -0.36 c. 0 d. 0.48 {max{X,Y}=2}{min{X,Y}=1}相互独立P{max{X,Y}=2,min{X,Y}=1}=P{max{X,Y}=2}P{min{X,Y}=1}P{X=1,Y=2}=P{Y=2}P{X=1,Y1}0.1=(0.1+b)(0.1+0.1)b=0.4,a=0.2Cov(X,Y)=EXYEXEY=2×0.4+2×0.1(0.6+0.4)(0.2+2×0.5)=0.36 \begin{array}{ll} \because & \{\max\{X,Y\}=2\} \text{与} \{\min\{X,Y\} = 1\} \text{相互独立} \\ \therefore & \mathbb{P}\{\max\{X,Y\}=2,\min\{X,Y\} = 1\} = \mathbb{P}\{\max\{X,Y\} = 2\}\mathbb{P}\{\min\{X,Y\} = 1\} \\ \therefore & \mathbb{P}\{X=1,Y=2\} = \mathbb{P}\{Y =2\}\mathbb{P}\{X=1, Y \ge 1\} \\ \therefore & 0.1 = (0.1+b)(0.1 + 0.1) \\ \therefore & b = 0.4,a=0.2 \\ \because & \mathrm{Cov}(X,Y) = EXY - EX\cdot EY \\ & = -2\times 0.4 + 2\times 0.1 - (-0.6 + 0.4)(0.2 + 2\times 0.5) \\ & = -0.36 \end{array}

results matching ""

    No results matching ""