Section05_相关系数
基本概念
定义
ρ X Y = C o v ( X − E X E X , Y − E Y E Y ) = C o v ( X , Y ) E X ⋅ E Y ⇒ C o v ( X , Y ) = ρ X Y ⋅ D X D Y
\begin{split}
& \rho_{XY} = \mathrm{Cov}\bigg(\frac{X-EX}{\sqrt{EX}}, \frac{Y-EY}{\sqrt{EY}}\bigg) \\
= & \frac{\mathrm{Cov}(X,Y)}{\sqrt{EX}\cdot \sqrt{EY}} \\
\Rightarrow & \mathrm{Cov}(X,Y) = \rho_{XY}\cdot \sqrt{DX} \sqrt{DY}
\end{split}
= ⇒ ρ X Y = Cov ( EX X − EX , E Y Y − E Y ) EX ⋅ E Y Cov ( X , Y ) Cov ( X , Y ) = ρ X Y ⋅ D X D Y
性质
∣ ρ X Y ∣ ≤ 1 \vert \rho_{XY} \vert\le 1 ∣ ρ X Y ∣ ≤ 1
ρ X Y = 0 \rho_{XY} = 0 ρ X Y = 0 称 X X X 与 Y Y Y 不相关(无线性关系)
⇔ C o v ( X , Y ) = 0 \Leftrightarrow \mathrm{Cov}(X,Y) = 0 ⇔ Cov ( X , Y ) = 0
⇔ D ( X ± Y ) = D X + D Y \Leftrightarrow D(X\pm Y) = DX + DY ⇔ D ( X ± Y ) = D X + D Y
⇔ E X Y = E X ⋅ E Y \Leftrightarrow EXY = EX \cdot EY ⇔ EX Y = EX ⋅ E Y
∣ ρ X Y ∣ = 1 ⇔ P { Y = a X + b } = 1 , a ≠ 0 \vert \rho_{XY} \vert = 1 \Leftrightarrow \mathbb{P}\{Y = aX + b\} = 1, a\ne 0 ∣ ρ X Y ∣ = 1 ⇔ P { Y = a X + b } = 1 , a = 0
a < 0 ⇒ ρ X Y = − 1 a < 0 \Rightarrow \rho_{XY} = -1 a < 0 ⇒ ρ X Y = − 1
a > 0 ⇒ ρ X Y = 1 a > 0 \Rightarrow \rho_{XY} = 1 a > 0 ⇒ ρ X Y = 1
X , Y X,Y X , Y 独立(无任何关系) → ↚ \substack{\rightarrow\\\nleftarrow} → ↚ X , Y X,Y X , Y 不相关(无线性关系)
( X , Y ) ∼ N ( μ 1 , μ 2 ; σ 1 2 , σ 2 2 ; ρ ) (X,Y) \sim \mathcal{N}(\mu_{1},\mu_{2};\sigma^{2}_{1},\sigma^{2}_{2};\rho) ( X , Y ) ∼ N ( μ 1 , μ 2 ; σ 1 2 , σ 2 2 ; ρ )
ρ = 0 ⇔ X , Y 不相关 ⇔ X , Y 独立 \rho = 0 \Leftrightarrow X,Y\text{不相关}\Leftrightarrow X,Y \text{独立} ρ = 0 ⇔ X , Y 不相关 ⇔ X , Y 独立 (仅对二维正态分布成立 )
例题
设二维离散型随机变量的概率分布为
( X , Y ) ( 0 , 0 ) ( 1 , 1 ) ( 0 , 2 ) ( 2 , 0 ) ( 2 , 2 ) P 1 4 1 3 1 4 1 12 1 12
\begin{array}{c|ccccc}
(X,Y) & (0,0) & (1,1) & (0,2) & (2,0) & (2,2) \\
\hline
P & \frac{1}{4} & \frac{1}{3} & \frac{1}{4} & \frac{1}{12} & \frac{1}{12}
\end{array}
( X , Y ) P ( 0 , 0 ) 4 1 ( 1 , 1 ) 3 1 ( 0 , 2 ) 4 1 ( 2 , 0 ) 12 1 ( 2 , 2 ) 12 1
判断 X X X 和 Y Y Y 是否不相关
判断 X X X 和 Y Y Y 是否独立
求 C o v ( X − Y , Y ) \mathrm{Cov}(X-Y,Y) Cov ( X − Y , Y )
∵ C o v ( X , Y ) = E X Y − E X ⋅ E Y ∴ C o v ( X , Y ) = 1 3 + 4 × 1 12 − ( 1 3 + 2 × 1 12 + 2 × 1 12 ) ( 1 3 + 2 × 1 4 + 2 × 1 12 ) = 2 3 − 2 3 = 0 ∴ X , Y 不相关 ∵ Y = 0 Y = 1 Y = 2 X = 0 1 / 4 0 1 / 4 1 / 2 X = 1 0 1 / 3 0 1 / 3 X = 2 1 / 12 0 1 / 12 1 / 6 1 / 3 1 / 3 1 / 3 ∴ p i j ≠ p i ⋅ p ⋅ j ∴ X , Y 不独立 C o v ( X − Y , Y ) = C o v ( X , Y ) − C o v ( Y , Y ) = 0 − D Y = [ E Y ] 2 − E Y 2 = 1 − 5 3 = − 2 3
\begin{array}{ll}
\because & \mathrm{Cov}(X,Y) = EXY - EX\cdot EY\\
\therefore & \mathrm{Cov}(X,Y) = \frac{1}{3}+4\times \frac{1}{12} - (\frac{1}{3} + 2\times \frac{1}{12} + 2\times \frac{1}{12})(\frac{1}{3} + 2\times \frac{1}{4}+ 2\times \frac{1}{12}) \\
& = \frac{2}{3} - \frac{2}{3} = 0 \\
\therefore & X,Y \text{不相关} \\\\
\because &
\begin{array}{c |ccc|c}
& Y=0 & Y=1 & Y=2 \\
\hline
X = 0 & 1/4 & 0 & 1/4 & 1/2 \\
X = 1 & 0 & 1/3 & 0 & 1/3 \\
X = 2 & 1/12 & 0 & 1/12 & 1/6 \\
\hline
& 1/3 & 1/3 & 1/3
\end{array} \\
\therefore & p_{ij} \ne p_{i\cdot}p_{\cdot j} \\
\therefore & X,Y \text{不独立} \\ \\
& \mathrm{Cov}(X-Y,Y) = \mathrm{Cov}(X,Y) - \mathrm{Cov}(Y,Y) \\
& = 0 -DY = [EY]^{2} - EY^{2} = 1 - \frac{5}{3} = - \frac{2}{3}
\end{array}
∵ ∴ ∴ ∵ ∴ ∴ Cov ( X , Y ) = EX Y − EX ⋅ E Y Cov ( X , Y ) = 3 1 + 4 × 12 1 − ( 3 1 + 2 × 12 1 + 2 × 12 1 ) ( 3 1 + 2 × 4 1 + 2 × 12 1 ) = 3 2 − 3 2 = 0 X , Y 不相关 X = 0 X = 1 X = 2 Y = 0 1/4 0 1/12 1/3 Y = 1 0 1/3 0 1/3 Y = 2 1/4 0 1/12 1/3 1/2 1/3 1/6 p ij = p i ⋅ p ⋅ j X , Y 不独立 Cov ( X − Y , Y ) = Cov ( X , Y ) − Cov ( Y , Y ) = 0 − D Y = [ E Y ] 2 − E Y 2 = 1 − 3 5 = − 3 2
将一枚硬币独立重复抛 n n n 次,以 X X X 和 Y Y Y 分别表示正面向上和反面向上的次数,则 X X X 与 Y Y Y 的相关系数是 (A)
A. − 1 -1 − 1
B. 0 0 0
C. 1 2 \frac{1}{2} 2 1
D. 1 1 1
设 X ∼ U ( 0 , 3 ) X\sim U(0,3) X ∼ U ( 0 , 3 ) ,Y Y Y 服从参数为 2 2 2 的泊松分布,且 X X X 与 Y Y Y 的协方差为 − 1 -1 − 1 ,则 D ( 2 X − Y + 1 ) = D(2X-Y+1)= D ( 2 X − Y + 1 ) =
D ( 2 X − Y + 1 ) = 4 D X + D Y − 2 C o v ( 2 X , Y ) = 4 × 3 2 12 + 2 − 4 × ( − 1 ) = 9
\begin{array}{ll}
& D(2X-Y +1) = 4 DX + DY - 2\mathrm{Cov}(2X,Y) \\
& = 4\times \frac{3^{2}}{12} + 2 - 4\times (-1) \\
& = 9
\end{array}
D ( 2 X − Y + 1 ) = 4 D X + D Y − 2 Cov ( 2 X , Y ) = 4 × 12 3 2 + 2 − 4 × ( − 1 ) = 9
设 X ∼ N ( 0 , 4 ) , Y ∼ B ( 3 , 1 3 ) X\sim \mathcal{N}(0,4), Y\sim B(3, \frac{1}{3}) X ∼ N ( 0 , 4 ) , Y ∼ B ( 3 , 3 1 ) ,且 X X X 与 Y Y Y 不相关,则 D ( X − 3 Y + 1 ) = D(X-3Y+1) = D ( X − 3 Y + 1 ) =
∵ X , Y 不相关 ∴ C o v ( X , Y ) = 0 D ( X − 3 Y + 1 ) = D X + 9 D Y − 2 C o v ( X , − 3 Y ) = D X + 9 D Y + 6 C o v ( X , Y ) = 4 + 9 × 3 × 1 3 × 2 3 = 10
\begin{array}{ll}
\because & X,Y \text{不相关} \\
\therefore & \mathrm{Cov}(X,Y) = 0 \\
& D(X-3Y+1) = DX + 9DY - 2\mathrm{Cov}(X,-3Y) \\
& = DX + 9DY +6\mathrm{Cov}(X,Y) \\
& = 4 + 9\times 3\times \frac{1}{3}\times \frac{2}{3} = 10
\end{array}
∵ ∴ X , Y 不相关 Cov ( X , Y ) = 0 D ( X − 3 Y + 1 ) = D X + 9 D Y − 2 Cov ( X , − 3 Y ) = D X + 9 D Y + 6 Cov ( X , Y ) = 4 + 9 × 3 × 3 1 × 3 2 = 10
设 X ∼ N ( 0 , 1 ) X\sim \mathcal{N}(0,1) X ∼ N ( 0 , 1 ) 在 X = x X = x X = x 的条件下 Y ∼ N ( x , 1 ) Y\sim \mathcal{N}(x,1) Y ∼ N ( x , 1 ) ,则 X X X 与 Y Y Y 的相关系数为
∵ 在 X = x 条件下 Y ∼ N ( x , 1 ) ∴ f Y ∣ X ( y ∣ x ) = 1 2 π e − ( y − x ) 2 2 ∴ f ( x , y ) = f X ( x ) f Y ∣ X ( y ∣ x ) = 1 2 π 2 π e − 2 x 2 − 2 x y + y 2 2 ∵ 当 ( X , Y ) ∼ N ( μ 1 , μ 2 ; σ 1 2 , σ 2 2 ; ρ ) 时 f ( x , y ) = 1 2 π σ 1 2 π σ 2 1 − ρ 2 × exp { − 1 1 − ρ 2 [ ( x − μ 1 ) 2 2 σ 1 2 − ρ ( x − μ 1 ) ( y − μ 2 ) σ 1 σ 2 + ( y − μ 2 ) 2 2 σ 2 2 ] } ∵ X ∼ 0 , 1 ∴ μ 1 = 0 , σ 1 = 1 ∵ − ( x − μ 1 ) 2 2 σ 1 2 ( 1 − ρ 2 ) = − x 2 ∴ x 2 2 ( 1 − ρ 2 ) = x 2 1 − ρ 2 = 1 2 ∴ ρ = 2 2
\begin{array}{ll}
\because & \text{在}X = x \text{条件下} Y \sim \mathcal{N}(x,1) \\
\therefore & \displaystyle f_{Y\vert X}(y\vert x) = \frac{1}{\sqrt{2\pi}}e^{-\frac{(y-x)^{2}}{2}} \\
\therefore & \displaystyle f(x,y) = f_{X}(x)f_{Y\vert X}(y\vert x) = \frac{1}{\sqrt{2\pi}\sqrt{2\pi}} e^{-\frac{2x^{2} - 2xy + y^{2}}{2}} \\
\because & \text{当}(X,Y)\sim \mathcal{N}(\mu_{1},\mu_{2};\sigma^{2}_{1},\sigma^{2}_{2}; \rho) \text{时} \\
& \displaystyle f(x,y) = \frac{1}{\sqrt{2\pi}\sigma_{1}\sqrt{2\pi}\sigma_{2}\sqrt{1-\rho^{2}}} \times \\
& \displaystyle \exp\bigg\{-\frac{1}{1-\rho^{2}}\bigg[\frac{(x-\mu_{1})^{2}}{2\sigma_{1}^{2}} - \rho\frac{(x-\mu_{1})(y-\mu_{2})}{\sigma_{1}\sigma_{2}} + \frac{(y-\mu_{2})^{2}}{2\sigma_{2}^{2}}\bigg]\bigg\} \\
\because & X\sim \mathcal{0,1} \\
\therefore & \mu_{1} = 0,\sigma_{1} = 1 \\
\because & \displaystyle -\frac{(x-\mu_{1})^{2}}{2\sigma_{1}^{2}(1-\rho^{2})} = -x^{2}\\
\therefore & \displaystyle \frac{x^{2}}{2(1-\rho^{2})} = x^{2} \\
& \displaystyle 1-\rho^{2} = \frac{1}{2} \\
\therefore & \rho = \frac{\sqrt{2}}{2} \\
\end{array}
∵ ∴ ∴ ∵ ∵ ∴ ∵ ∴ ∴ 在 X = x 条件下 Y ∼ N ( x , 1 ) f Y ∣ X ( y ∣ x ) = 2 π 1 e − 2 ( y − x ) 2 f ( x , y ) = f X ( x ) f Y ∣ X ( y ∣ x ) = 2 π 2 π 1 e − 2 2 x 2 − 2 x y + y 2 当 ( X , Y ) ∼ N ( μ 1 , μ 2 ; σ 1 2 , σ 2 2 ; ρ ) 时 f ( x , y ) = 2 π σ 1 2 π σ 2 1 − ρ 2 1 × exp { − 1 − ρ 2 1 [ 2 σ 1 2 ( x − μ 1 ) 2 − ρ σ 1 σ 2 ( x − μ 1 ) ( y − μ 2 ) + 2 σ 2 2 ( y − μ 2 ) 2 ] } X ∼ 0 , 1 μ 1 = 0 , σ 1 = 1 − 2 σ 1 2 ( 1 − ρ 2 ) ( x − μ 1 ) 2 = − x 2 2 ( 1 − ρ 2 ) x 2 = x 2 1 − ρ 2 = 2 1 ρ = 2 2