Section01_总体、样本和统计量

总体和样本

  1. 总体 所研究对象的某一数量指标的全体 XX
  2. 简单随机样本 看到"X1,X2,,XnX_{1},X_{2},\cdots,X_{n} 是来自总体 XX 容量为 nn 的简单随机样本"
    1. X1,X2,,XnX_{1},X_{2},\cdots, X_{n} 相互独立
    2. X1,X2,,XnX_{1}, X_{2},\cdots, X_{n} 与总体 XX 同分布,即 FXi(x)=FX(x),EXi=EX,DXi=DXFX_{i}(x) = F_{X}(x), EX_{i} = EX, DX_{i} = DX
      • X1,X2,,XnX_{1}, X_{2},\cdots, X_{n}随机变量 (观察前)
      • x1,x2,,xnx_{1}, x_{2},\cdots, x_{n}具体数值 (观察后)

例题

  1. (X1,X2,X3,X4)(X_{1},X_{2},X_{3},X_{4}) 为来自总体 X(0121/61/21/3)X\sim \left( \begin{matrix} 0 & 1 & 2\\ 1/6 & 1/2 & 1/3 \end{matrix} \right) 的一个简单随机样本,求 P{min1i4Xi1}\mathbb{P}\{\min\limits_{1\le i \le 4}X_{i} \le 1\} P{min1i4Xi1}=1P{min1i4Xi>1}=1P(X1>1,X2>1,X3>1,X4>1)=1P{X1>1}P{X2>1}P{X3>1}P{X4>1}=113×13×13×13=8081 \begin{array}{ll} & \mathbb{P}\{\min\limits_{1\le i \le 4}X_{i} \le 1\} = 1 - \mathbb{P}\{\min\limits_{1\le i \le 4} X_{i}> 1\} \\ & = 1- \mathbb{P}(X_{1}>1, X_{2}>1, X_{3}>1, X_{4}>1) \\ & = 1- \mathbb{P}\{X_{1}>1\}\mathbb{P}\{X_{2}>1\}\mathbb{P}\{X_{3}>1\}\mathbb{P}\{X_{4}>1\} \\ & = 1 - \frac{1}{3}\times \frac{1}{3}\times \frac{1}{3}\times \frac{1}{3} = \frac{80}{81} \end{array}

统计量

  1. 定义 样本的不含任何未知参数的函数: g(X1,X2,,Xn)g(X_{1},X_{2},\cdots,X_{n}) 称为统计量
  2. 常用统计量
    1. 样本均值 Xˉ=1ni=1nXi\displaystyle \bar{X} = \frac{1}{n}\sum_{i=1}^{n}X_{i}
    2. 样本方差 S2=1n1i=1n(XiXˉ)2=1n1(i=1nXi2nXˉ2)\displaystyle S^{2} = \frac{1}{n-1}\sum_{i=1}^{n}(X_{i}-\bar{X})^{2} = \frac{1}{n-1}\bigg(\sum_{i=1}^{n}X_{i}^{2} - n\bar{X}^{2}\bigg)

      总体X,EX=μ,DX=σ2X,EX = \mu, DX = \sigma^{2} (未必正态)

      • EXˉ=μE \bar{X} = \mu
      • DXˉ=σ2nD \bar{X} = \frac{\sigma^{2}}{n}
      • ES2=1n1[i=1nEXi2nEXˉ2]=1n1[n(μ2+σ2)n(μ2+σ2n)]=σ2\begin{array}{ll} E S^{2} = \frac{1}{n-1}[\sum\limits_{i=1}^{n}EX_{i}^{2} - n\cdot E \bar{X}^{2}]\\= \frac{1}{n-1}[n(\mu^{2} + \sigma^{2}) - n(\mu^{2} + \frac{\sigma^{2}}{n})]=\sigma^{2} \end{array}
    3. 样本标准差 S=S2S = \sqrt{S^{2}}
    4. kk阶原点矩 Ak=1n1nYik,k=1,2,A_{k} = \frac{1}{n}\sum\limits_{1}^{n}Y_{i}^{k}, k = 1,2,\cdots

      总体的 kk 阶原点矩 EXkEX^{k};由大数定律得 1ni=1nYikPE(1ni=1nYik)\frac{1}{n}\sum\limits_{i=1}^{n}Y^{k}_{i}\xrightarrow{P}E(\frac{1}{n}\sum\limits_{i=1}^{n}Y^{k}_{i})

      • k=1Xˉ=1ni=1nXiPEX=μk=1\quad \bar{X} = \frac{1}{n}\sum\limits_{i=1}^{n}X_{i} \xrightarrow{P} EX =\muXˉ\bar{X} 大概率在 EXEX 附近取值 XˉEX\bar{X}\approx EX (矩估计)
      • k=2A2=1ni=1nXi2PEX2A2EX2k=2\quad A_{2}=\frac{1}{n}\sum\limits_{i=1}^{n}X^{2}_{i} \xrightarrow{P} EX^{2}\Rightarrow A_{2}\approx EX^{2}
    5. 样本的kk阶中心矩 Bk=1ni=1n(XiXˉ)k,k=1,2,B_{k} = \frac{1}{n}\sum\limits_{i=1}^{n}(X_{i}-\bar{X})^{k}, k = 1,2,\cdots
      • B1=0B_{1} = 0
      • B2=1ni=1n(XiXˉ)2B_{2} = \frac{1}{n}\sum\limits_{i=1}^{n}(X_{i}-\bar{X})^{2}

        B2=1ni=1n(XiXˉ)2=1ni=1nXi2(1ni=1nXi)2Pμ2+σ2μ2=σ2\begin{array}{ll}B_{2} = \frac{1}{n}\sum\limits_{i=1}^{n}(X_{i}-\bar{X})^{2} = \frac{1}{n}\sum\limits_{i=1}^{n}X_{i}^{2} - (\frac{1}{n}\sum\limits_{i=1}^{n}X_{i})^{2} \\ \xrightarrow{P} \mu^{2} + \sigma^{2} - \mu^{2} = \sigma^{2} \end{array}

        • 因此 B2σ2B_{2}\approx \sigma^{2} (矩估计)
    6. 顺序统计量
      1. max{X1,X2,,Xn}\max\{X_{1},X_{2},\cdots,X_{n}\}
      2. min{X1,X2,,Xn}\min\{X_{1},X_{2},\cdots,X_{n}\}
      3. 中央台去掉一个最高分去掉一个最低分 i=1nXimin{X1,X2,,Xn}max{X1,X2,,Xn}\sum\limits_{i=1}^{n}X_{i} - \min\{X_{1},X_{2},\cdots,X_{n}\} - \max\{X_{1},X_{2},\cdots,X_{n}\}

results matching ""

    No results matching ""