Section03_连续型随机变量及其分布
基本概念
定义 若
F X ( x ) = P { X ≤ x } = ∫ − ∞ x f ( t ) ⋅ d t
F_{X}(x) = \mathbb{P}\{X\le x\} = \int_{-\infty}^{x} f(t)\cdot dt
F X ( x ) = P { X ≤ x } = ∫ − ∞ x f ( t ) ⋅ d t
则称X X X 为连续型变量,f ( x ) f(x) f ( x ) 为X X X 的概率密度函数
注1
连续型随机变量的分布函数F X ( x ) F_{X}(x) F X ( x ) 必定连续
若X X X 的分布函数F ( x ) F(x) F ( x ) 连续且至多有有限个不可导点,则X X X 为连续型随机变量
注2 F ′ ( x ) = f ( x ) F'(x) = f(x) F ′ ( x ) = f ( x ) (其中x x x 为f ( x ) f(x) f ( x ) 的连续点)
f ( x ) f(x) f ( x ) 为密度 ⇔ \Leftrightarrow ⇔ { f ( x ) ≥ 0 ∫ − ∞ ∞ f ( x ) ⋅ d x = 1 \begin{cases} f(x)\ge 0 \\ \int_{-\infty}^{\infty}f(x)\cdot dx =1 \end{cases} { f ( x ) ≥ 0 ∫ − ∞ ∞ f ( x ) ⋅ d x = 1
注 如f 1 ( x ) = { 1 2 , 0 < x < 2 0 , 其他 f_{1}(x) = \begin{cases} \frac{1}{2},& 0<x<2 \\ 0, & \text{其他} \end{cases} f 1 ( x ) = { 2 1 , 0 , 0 < x < 2 其他 和 f 2 ( x ) = { 1 2 , 0 ≤ x ≤ 2 0 , 其他 f_{2}(x) = \begin{cases} \frac{1}{2},& 0\le x\le 2 \\ 0, & \text{其他} \end{cases} f 2 ( x ) = { 2 1 , 0 , 0 ≤ x ≤ 2 其他 两者均为密度,且f 1 ( x ) = f 2 ( x ) \color{#D0104C}f_{1}(x) = f_{2}(x) f 1 ( x ) = f 2 ( x ) ,在概率论中对二者不加以区分
如何由F ( x ) F(x) F ( x ) 求f ( x ) f(x) f ( x ) ? 尽管求导 ,如
F ( x ) = { 0 , x < 0 sin x , 0 ≤ x < π 2 1 , x ≥ π 2 ⇒ X ’s Density: f ( x ) = { cos x , 0 < x < π 2 0 , others
\begin{array}{ll}
& F(x) = \begin{cases}
0, & x<0 \\
\sin x, & 0\le x< \frac{\pi}{2} \\
1, & x\ge \frac{\pi}{2}
\end{cases} \\
\Rightarrow & X \text{'s Density: } f(x) = \begin{cases}
\cos x, & 0 < x < \frac{\pi}{2} \\
0, & \text{others}
\end{cases} \\
\end{array}
⇒ F ( x ) = ⎩ ⎨ ⎧ 0 , sin x , 1 , x < 0 0 ≤ x < 2 π x ≥ 2 π X ’s Density: f ( x ) = { cos x , 0 , 0 < x < 2 π others
求概率
P { X = x 0 } = F ( x 0 ) − F ( x 0 − 0 ) = 0 \mathbb{P}\{X=x_{0}\} = F(x_{0}) - F(x_{0}-0) = 0 P { X = x 0 } = F ( x 0 ) − F ( x 0 − 0 ) = 0
P { a < x ≤ b } = P { a < X < b } = P { a ≤ X ≤ b } = F ( b ) − F ( a ) = ∫ a b f ( x ) ⋅ d x \displaystyle \mathbb{P}\{a<x\le b\} = \mathbb{P}\{a <X<b\} = \mathbb{P}\{a\le X\le b\} = F(b)-F(a) = \int_{a}^{b}f(x)\cdot dx P { a < x ≤ b } = P { a < X < b } = P { a ≤ X ≤ b } = F ( b ) − F ( a ) = ∫ a b f ( x ) ⋅ d x
注 连续型随机变量计算时仅考虑f ( x ) > 0 f(x)>0 f ( x ) > 0 的部分
例题
设随机变量 X X X 的概率密度为 f ( x ) = { 1 6 , − 2 < x < 0 1 3 , 1 < x < 3 0 , 其他 f(x) = \begin{cases} \frac{1}{6}, & -2 < x < 0 \\ \frac{1}{3}, & 1 < x < 3 \\ 0, & \text{其他} \end{cases} f ( x ) = ⎩ ⎨ ⎧ 6 1 , 3 1 , 0 , − 2 < x < 0 1 < x < 3 其他 求 P { X 2 ≤ 5 } \mathbb{P}\{X^{2}\le 5\} P { X 2 ≤ 5 }
∵ f ( x ) = { 1 6 , − 2 < x < 0 1 3 , 1 < x < 3 0 , 其他 ∴ P { x 2 ≤ 5 } = ∫ − 2 0 f ( x ) ⋅ d x + ∫ 1 5 f ( x ) ⋅ d x = 1 6 × 2 + 1 3 × ( 5 − 1 ) = 5 3
\begin{array}{ll}
\because & f(x) = \begin{cases} \frac{1}{6}, & -2 < x < 0 \\ \frac{1}{3}, & 1 < x < 3 \\ 0, & \text{其他} \end{cases} \\
\therefore & \displaystyle \mathbb{P}\{x^{2}\le 5\} = \int_{-2}^{0}f(x)\cdot dx + \int_{1}^{\sqrt{5}}f(x)\cdot dx \\
& = \frac{1}{6}\times 2 + \frac{1}{3}\times (\sqrt{5}-1) = \frac{\sqrt{5}}{3}
\end{array}
∵ ∴ f ( x ) = ⎩ ⎨ ⎧ 6 1 , 3 1 , 0 , − 2 < x < 0 1 < x < 3 其他 P { x 2 ≤ 5 } = ∫ − 2 0 f ( x ) ⋅ d x + ∫ 1 5 f ( x ) ⋅ d x = 6 1 × 2 + 3 1 × ( 5 − 1 ) = 3 5
设随机变量 X X X 的概率密度函数为 f ( x ) = { k cos x , ∣ x ∣ < π 2 0 , ∣ x ∣ ≥ π 2 f(x) = \begin{cases} k\cos x, & \vert x \vert < \frac{\pi}{2} \\ 0, & \vert x \vert \ge \frac{\pi}{2} \end{cases} f ( x ) = { k cos x , 0 , ∣ x ∣ < 2 π ∣ x ∣ ≥ 2 π
求常数 k k k
求 X X X 的分布函数 F ( x ) F(x) F ( x )
∵ ∫ − ∞ ∞ f ( x ) ⋅ d x = 1 ∵ f ( x ) = { k cos x , ∣ x ∣ < π 2 0 , ∣ x ∣ ≥ π 2 ∴ ∫ − ∞ ∞ f ( x ) ⋅ d x = ∫ − π 2 π 2 f ( x ) ⋅ d x = k sin x ∣ − π 2 π 2 = 2 k ∴ k = 1 2 F ( x ) = P { X ≤ x } = ∫ − ∞ x f ( x ) ⋅ d x ∴ F ( x ) = { 0 , x < − π 2 1 2 sin x + 1 2 , − π 2 ≤ x < π 2 1 , x ≥ π 2
\begin{array}{ll}
\because & \displaystyle \int_{-\infty}^{\infty}f(x)\cdot dx = 1 \\
\because & f(x) = \begin{cases}
k\cos x, & \vert x \vert < \frac{\pi}{2} \\
0, & \vert x \vert \ge \frac{\pi}{2}
\end{cases}\\
\therefore & \displaystyle \int_{-\infty}^{\infty}f(x)\cdot dx = \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}}f(x)\cdot dx = k\sin x\vert^{\frac{\pi}{2}}_{-\frac{\pi}{2}} = 2k \\
\therefore & k = \frac{1}{2} \\ \\
& \displaystyle F(x) = \mathbb{P}\{X\le x\} = \int_{-\infty}^{x}f(x)\cdot dx \\
\therefore & F(x) = \begin{cases}
0, & x<-\frac{\pi}{2} \\
\frac{1}{2}\sin x + \frac{1}{2}, & -\frac{\pi}{2}\le x < \frac{\pi}{2} \\
1, & x\ge \frac{\pi}{2}
\end{cases} \\
\end{array}
∵ ∵ ∴ ∴ ∴ ∫ − ∞ ∞ f ( x ) ⋅ d x = 1 f ( x ) = { k cos x , 0 , ∣ x ∣ < 2 π ∣ x ∣ ≥ 2 π ∫ − ∞ ∞ f ( x ) ⋅ d x = ∫ − 2 π 2 π f ( x ) ⋅ d x = k sin x ∣ − 2 π 2 π = 2 k k = 2 1 F ( x ) = P { X ≤ x } = ∫ − ∞ x f ( x ) ⋅ d x F ( x ) = ⎩ ⎨ ⎧ 0 , 2 1 sin x + 2 1 , 1 , x < − 2 π − 2 π ≤ x < 2 π x ≥ 2 π
常见连续型随机变量
均匀分布 X ∼ U ( a , b ) X\sim U(a,b) X ∼ U ( a , b )
X ∼ f ( x ) = { 1 b − a , a < x < b 0 , 其他
X\sim f(x) = \begin{cases}
\frac{1}{b-a}, & a < x < b \\
0, & \text{其他}
\end{cases}
X ∼ f ( x ) = { b − a 1 , 0 , a < x < b 其他
若 ( c , d ) ⊂ ( a , b ) (c,d)\subset (a,b) ( c , d ) ⊂ ( a , b ) ,则 P { c < X < d } = d − c b − a \mathbb{P}\{c<X<d\} = \frac{d-c}{b-a} P { c < X < d } = b − a d − c
例 设A , B A,B A , B 为任意两个事件,分别判断下列命题的正确性
若P ( A B ) = 0 \mathbb{P}(AB)= 0 P ( A B ) = 0 ,则 A , B A,B A , B 互斥 × 如X ∼ U ( − 1 , 1 ) , A = { − 1 < X ≤ 0 } , B = { 0 ≤ X < 1 } X\sim U(-1,1), A =\{-1<X\le 0\}, B =\{0 \le X < 1\} X ∼ U ( − 1 , 1 ) , A = { − 1 < X ≤ 0 } , B = { 0 ≤ X < 1 }
若P ( A B ) = A \mathbb{P}(AB) = A P ( A B ) = A ,则 A ⊂ B A\subset B A ⊂ B × 如X ∼ U ( − 1 , 1 ) , A = { − 1 2 < X ≤ 0 } , B = { 1 2 ≤ X < 0 } X\sim U(-1,1), A =\{-\frac{1}{2}<X\le 0\}, B =\{\frac{1}{2} \le X < 0\} X ∼ U ( − 1 , 1 ) , A = { − 2 1 < X ≤ 0 } , B = { 2 1 ≤ X < 0 }
注 由概率无法推出事件之间的关系(包含,相容,互斥)
指数分布 X ∼ E ( λ ) , λ > 0 X\sim E(\lambda), \lambda > 0 X ∼ E ( λ ) , λ > 0
X ∼ f ( x ) = { λ e − λ x , x > 0 0 , x ≤ 0 X\sim f(x) = \begin{cases} \lambda e^{-\lambda x}, & x>0 \\ 0, & x\le 0 \end{cases} X ∼ f ( x ) = { λ e − λ x , 0 , x > 0 x ≤ 0
X ∼ F ( x ) = P { X ≤ x } = ∫ − ∞ x f ( t ) ⋅ d t = { 0 , x ≤ 0 ∫ 0 x λ e − λ t ⋅ d t = 1 − e − λ x \displaystyle X\sim F(x) = \mathbb{P}\{X\le x\} = \int_{-\infty}^{x} f(t)\cdot dt = \begin{cases}
0, x \le 0 \\
\displaystyle \int_{0}^{x}\lambda e^{-\lambda t}\cdot dt \\
\end{cases} = 1-e^{-\lambda x} X ∼ F ( x ) = P { X ≤ x } = ∫ − ∞ x f ( t ) ⋅ d t = ⎩ ⎨ ⎧ 0 , x ≤ 0 ∫ 0 x λ e − λ t ⋅ d t = 1 − e − λ x
相关问题 寿命 P { X > a } = { 1 − P { X ≤ a } = 1 − F ( a ) = e − λ a ∫ a + ∞ λ e − λ x ⋅ d x = − e − λ x ∣ a + ∞ = e − λ a \mathbb{P}\{X > a\} = \begin{cases}
1- \mathbb{P}\{X\le a\} = 1-F(a) = e^{-\lambda a} \\
\displaystyle \int_{a}^{+\infty} \lambda e^{-\lambda x}\cdot dx = -e^{-\lambda x}\vert_{a}^{+\infty} = e^{-\lambda a}
\end{cases} P { X > a } = ⎩ ⎨ ⎧ 1 − P { X ≤ a } = 1 − F ( a ) = e − λa ∫ a + ∞ λ e − λ x ⋅ d x = − e − λ x ∣ a + ∞ = e − λa
无记忆性 若 s > 0 , t > 0 s>0, t>0 s > 0 , t > 0 则
P { X > s + t ∣ X > s } = P { X > s + t , X > s } P { X > s } = P { X > s + t } P { X > s } = e − λ ( s + t ) e − λ s = e − λ t = P { X > t }
\begin{array}{ll}
& \displaystyle \mathbb{P}\{X>s+t\vert X>s\} = \frac{\mathbb{P}\{X > s+t, X > s\}}{\mathbb{P}\{X > s\}} \\
& \displaystyle = \frac{\mathbb{P}\{X > s + t\}}{\mathbb{P}\{X>s\}} = \frac{e^{-\lambda(s+t)}}{e^{-\lambda s}} = e^{-\lambda t} = \mathbb{P}\{X> t\}
\end{array}
P { X > s + t ∣ X > s } = P { X > s } P { X > s + t , X > s } = P { X > s } P { X > s + t } = e − λ s e − λ ( s + t ) = e − λ t = P { X > t }
正态分布 X ∼ N ( μ , σ 2 ) , σ > 0 X\sim \mathcal{N}(\mu,\sigma^{2}), \sigma>0 X ∼ N ( μ , σ 2 ) , σ > 0
X ∼ f ( x ) = 1 2 π σ e − ( x − μ ) 2 2 σ 2 , x ∈ R X\sim f(x) = \frac{1}{\sqrt{2\pi}\sigma}e^{-\frac{(x-\mu)^{2}}{2\sigma^{2}}}, \quad x\in \mathbb{R} X ∼ f ( x ) = 2 π σ 1 e − 2 σ 2 ( x − μ ) 2 , x ∈ R
F ( x ) = ∫ − ∞ x 1 2 π σ e − ( t − μ ) 2 2 σ 2 ⋅ d t \displaystyle F(x) = \int_{-\infty}^{x}\frac{1}{\sqrt{2\pi}\sigma}e^{-\frac{(t - \mu)^{2}}{2\sigma^{2}}} \cdot dt F ( x ) = ∫ − ∞ x 2 π σ 1 e − 2 σ 2 ( t − μ ) 2 ⋅ d t 无法积分 ;但由 F ′ ( x ) = f ( x ) > 0 F'(x) = f(x) >0 F ′ ( x ) = f ( x ) > 0 可得,F ( x ) F(x) F ( x ) 单调递增
Y = X − μ σ ∼ N ( 0 , 1 ) Y = \frac{X-\mu}{\sigma}\sim \mathcal{N}(0,1) Y = σ X − μ ∼ N ( 0 , 1 )
Y Y Y 的密度 φ ( y ) = 1 2 π e − y 2 2 , y ∈ R \varphi(y) = \frac{1}{\sqrt{2\pi}}e^{-\frac{y^{2}}{2}}, \quad y\in \mathbb{R} φ ( y ) = 2 π 1 e − 2 y 2 , y ∈ R
Y Y Y 的分布函数 Φ ( y ) = ∫ − ∞ x 1 2 π e − t 2 2 ⋅ d t \displaystyle \Phi(y) = \int_{-\infty}^{x}\frac{1}{\sqrt{2\pi}}e^{-\frac{t^{2}}{2}}\cdot dt Φ ( y ) = ∫ − ∞ x 2 π 1 e − 2 t 2 ⋅ d t
记
Φ ( 0 ) = 0.5 \Phi(0) = 0.5 Φ ( 0 ) = 0.5
Φ ( 1 ) = 0.8413 \Phi(1) = 0.8413 Φ ( 1 ) = 0.8413
Φ ( 1.645 ) = 0.95 \Phi(1.645) = 0.95 Φ ( 1.645 ) = 0.95
Φ ( 1.96 ) = 0.975 \Phi(1.96) = 0.975 Φ ( 1.96 ) = 0.975
P { a < X < b } = P { a − μ σ < Y < b − μ σ } = Φ ( b − μ σ ) − Φ ( a − μ σ ) \mathbb{P}\{a<X<b\} = \mathbb{P}\{\frac{a-\mu}{\sigma} < Y < \frac{b-\mu}{\sigma}\} = \Phi(\frac{b-\mu}{\sigma}) - \Phi(\frac{a-\mu}{\sigma}) P { a < X < b } = P { σ a − μ < Y < σ b − μ } = Φ ( σ b − μ ) − Φ ( σ a − μ )
∫ − ∞ + ∞ 1 2 π σ e − ( x − μ ) 2 2 σ 2 ⋅ d x = 1 \displaystyle \int_{-\infty}^{+\infty}\frac{1}{\sqrt{2\pi}\sigma}e^{-\frac{(x-\mu)^{2}}{2\sigma^{2}}}\cdot dx = 1 ∫ − ∞ + ∞ 2 π σ 1 e − 2 σ 2 ( x − μ ) 2 ⋅ d x = 1 的妙用,凑!
例
∫ 0 + ∞ e − x 2 ⋅ d x = 1 2 ∫ − ∞ + ∞ e − x 2 ⋅ d x = 1 2 ∫ − ∞ + ∞ e − x 2 2 × 1 2 ∴ π 2 ∫ − ∞ + ∞ 1 2 π × 1 2 e − x 2 2 × 1 2 = π 2
\begin{array}{ll}
& \displaystyle \int_{0}^{+\infty}e^{-x^{2}}\cdot dx = \frac{1}{2}\int_{-\infty}^{+\infty} e^{-x^{2}}\cdot dx = \frac{1}{2} \int_{-\infty}^{+\infty} e^{-\frac{x^{2}}{2\times \frac{1}{2}}} \\
\therefore & \displaystyle \frac{\sqrt{\pi}}{2}\int_{-\infty}^{+\infty}\frac{1}{\sqrt{2\pi}\times \sqrt{\frac{1}{2}}} e^{-\frac{x^{2}}{2\times \frac{1}{2}}} = \frac{\sqrt{\pi}}{2} \\
\end{array}
∴ ∫ 0 + ∞ e − x 2 ⋅ d x = 2 1 ∫ − ∞ + ∞ e − x 2 ⋅ d x = 2 1 ∫ − ∞ + ∞ e − 2 × 2 1 x 2 2 π ∫ − ∞ + ∞ 2 π × 2 1 1 e − 2 × 2 1 x 2 = 2 π