Section01_多维随机变量及其分布函数

多维随机变量

  1. 定义 X=X(ω),Y=Y(ω)X= X(\omega), Y = Y(\omega) 是定义在同一 Ω\Omega 上的随机变量,则称 (X,Y)(X,Y)为二维随机变量
      1. XX 一维随机变量
      2. (X,Y)(X,Y) 二维随机变量
      3. (X1,,Xn)(X_{1},\cdots, X_{n}) nn 维随机变量
      4. Z=X+YZ= X+Y二元函数,但 ZZ一维随机变量

联合分布函数

  1. 定义 P{Xx,Yy}F(x,y)\mathbb{P}\{X\le x, Y\le y\}\triangleq F(x,y)(X,Y)(X,Y) 的联合分布函数,其中 xR,yRx\in \mathbb{R}, y\in \mathbb{R}
    • 几何上,F(x,y)F(x,y) 表示随机变量 (X,Y)(X,Y) 落在点 (x,y)(x,y) 左下方的概率
  2. 性质
    1. 0F(x,y)1; F(,y)=F(x,)=F(,)=0;F(+,+)=10 \le F(x,y)\le 1;\ F(-\infty, y) = F(x, -\infty) = F(-\infty,-\infty)= 0; F(+\infty, +\infty) = 1
    2. F(x,y)F(x,y) 关于每个变量单调不减,即 x1<x2,y1<y2\forall x_{1}< x_{2}, y_{1}<y_{2},有 F(x1,y1)F(x2,y1)F(x2,y2)F(x_{1},y_{1}) \le F(x_{2},y_{1}) \le F(x_{2},y_{2})
      • ABP(A)<P(B)A\subset B \Rightarrow P(A)< P(B)
    3. F(x,y)F(x,y) 关于每个变量均友连续,即 F(x+0,y)=F(x,y); F(x,y+0)=F(x,y)F(x+0,y) = F(x,y);\ F(x,y+0)=F(x,y)
    4. P{x1<X<x2,y1<Y<y2}=F(x2,y2)F(x1,y2)F(x2,y1)+F(x1,y1)0\mathbb{P}\{x_{1}<X<x_{2}, y_{1}<Y<y_{2}\} = F(x_{2},y_{2}) - F(x_{1},y_{2}) - F(x_{2},y_{1}) + F(x_{1},y_{1}) \le 0

例题

  1. (X,Y)(X,Y) 的分布函数为 F(x,y)={a(b+arctanx)(cey),<x<+,y>00,其他F(x,y) = \begin{cases} a(b+\arctan x)(c-e^{-y}), & -\infty < x < +\infty, y>0 \\ 0, & \text{其他} \end{cases},求常数 a,b,ca,b,c 的值 { y,F(,y)=0F(+,+)=1F(x,0)=F(x,0+){a(b+arctan)(cey)=0a(b+π2)(c0)=10=limy0+a(b+arctanx)(cey){a=1πb=π2c=1 \begin{array}{ll} \because & \begin{cases} \forall\ y, F(-\infty, y) = 0 \\ F(+\infty, +\infty) = 1 \\ F(x,0) = F(x,0+) \end{cases} \\ \therefore & \begin{cases} a(b+\arctan -\infty)(c - e^{-y}) = 0 \\ a(b + \frac{\pi}{2})(c-0) = 1 \\ 0 = \displaystyle \lim_{y\to 0^{+}} a(b+\arctan x)(c- e^{-y}) \end{cases} \\ \therefore & \begin{cases} a = \frac{1}{\pi} \\ b = \frac{\pi}{2} \\ c = 1 \end{cases} \\ \end{array}

results matching ""

    No results matching ""