Section05_由(X,Y)的分布,求Z=g(X,Y)的分布

(X,Y)(X,Y) 为二维离散型

计算方法

  • P{X=xi,Y=yj}=pij,i,j=1,2,\mathbb{P}\{X=x_{i},Y = y_{j}\}= p_{ij},\quad i,j=1,2,\cdots,则 P{Z=g(xi,yj)}=pij\mathbb{P}\{Z=g(x_{i},y_{j})\} =p_{ij},若 g(xi,yj)g(x_{i},y_{j}) 有相同值,应合并

例题

  1. 随机变量 X,YX,Y 的分布律如下所示,求Z=X+Y,Z=max{X,Y}Z=X+Y, Z=\max\{X,Y\} 的分布律 Y=0Y=1X=01/81/8X=11/85/8 \begin{array}{c|cc} & Y = 0 & Y=1 \\ \hline X=0 & 1/8 & 1/8 \\ X=1 & 1/8 & 5/8 \\ \end{array}
    • Z=X+Y(012181458)Z=max{X,Y}(011878) \begin{array}{ll} & Z = X+Y \sim \left( \begin{matrix} 0 & 1 & 2 \\ \frac{1}{8} & \frac{1}{4} & \frac{5}{8} \end{matrix} \right) \\ & Z = \max\{X,Y\}\sim \left( \begin{matrix} 0 & 1 \\ \frac{1}{8} & \frac{7}{8} \end{matrix} \right) \end{array}

(X,Y)(X,Y) 为二维连续型

三种情况

  • (X,Y)f(x,y)(X,Y)\sim f(x,y),则 Z=g(X,Y)Z=g(X,Y) 可能为
    1. 离散型 (求分布律)
    2. 连续型 (先求FZ(z)F_{Z}(z),再求fZ(z)f_{Z}(z))
    3. 混合型 (仅求FZ(z)F_{Z}(z))

计算方法

分布函数法

FZ(z)=P{Zz}=P{g(X,Y)z}=g(x,y)zf(x,y)dσfZ(z) \begin{split} F_{Z}(z) & = \mathbb{P}\{Z\le z\} = \mathbb{P}\{g(X,Y)\le z\} \\ & = \iint\limits_{g(x,y)\le z}f(x,y)\cdot d\sigma \Rightarrow f_{Z}(z) \end{split}

  • ==Leibniz integral rule==

    Want to know more? ddzα(z)β(z)g(x,z)dx=α(z)β(z)gz(x,z)dx+[g(β(z),z)β(z)+g(α(z),z)α(z)] \color{#D0104C} \begin{split} &\frac{d}{dz}\int_{\alpha(z)}^{\beta(z)} g(x, z)\cdot dx = \\ &\int_{\alpha(z)}^{\beta(z)}g'_{z}(x,z)\cdot dx + [g(\beta(z),z)\beta'(z) + g(\alpha(z),z)\alpha'(z)] \end{split}

U=max{X,Y}U = \max\{X,Y\}V=min{X,Y}V = \min\{X,Y\} 的分布

FU(x)=P{Ux}=P{max(X,Y)x}=P{Xx,Yx}=X,Y独立P{Xx}P{Yx}=FX(x)FY(x)=X,Y同分布P{Xx}P{Xx}=FX2(x)FV(x)=P{Vx}=P{min(X,Y)x}=1P{X>x,Y>x}=X,Y独立1[1P{Xx}][1P{Yx}]=1[1FX(x)][1FY(x)]=X,Y同分布1[1FX(x)]2 \begin{split} & F_{U}(x) = \mathbb{P}\{U\le x\} = \mathbb{P}\{\max(X,Y)\le x\} = \mathbb{P}\{X\le x, Y\le x\} \\ & \xlongequal{\text{若}X,Y\text{独立}} \mathbb{P}\{X\le x\} \mathbb{P}\{Y\le x\} = F_{X}(x)F_{Y}(x) \\ & \xlongequal{\text{若}X,Y\text{同分布}} \mathbb{P}\{X\le x\} \mathbb{P}\{X\le x\} = F_{X}^{2}(x)\\ \\\\ & F_{V}(x) = \mathbb{P}\{V\le x\} = \mathbb{P}\{\min(X,Y)\le x\} = 1 - \mathbb{P}\{X > x, Y > x\} \\ & \xlongequal{\text{若}X,Y\text{独立}} 1 - [1- \mathbb{P}\{X\le x\}][1- \mathbb{P}\{Y\le x\}] = 1 - [1-F_{X}(x)][1- F_{Y}(x)] \\ & \xlongequal{\text{若}X,Y\text{同分布}} 1 - [1-F_{X}(x)]^{2} \end{split}

例题

  1. 设连续型随机变量 (X,Y)(X,Y) 的概率密度为 f(x,y)={1,0x1,0y10,其他f(x,y) = \begin{cases} 1, & 0 \le x\le 1, 0\le y\le 1 \\ 0, & \text{其他} \end{cases},求
    1. Z=X+YZ=X+Y 的概率密度 fZ(z)f_{Z}(z)
    2. Z=XYZ = \vert X-Y \vert 的概率密度 fZ(z)f_{Z}(z)
      Trulli
      Fig.1.1 - 例1.1的积分范围

FZ(z)=P{Zz}=P{X+Yz},zRX(0,1),Y(0,1)Z=X+Y(0,2)z<0时, FZ(z)=00z<1时, FZ(z)=x+y<zf(x,y)dσ=0zdx0zx1dy1z<2时, FZ(z)=x+y<zf(x,y)dσ=1z11dxzx11dyfZ(z)={z,0<z<12z,1<z<20,其他 \begin{array}{ll} & F_{Z}(z) = \mathbb{P}\{Z\le z\} = \mathbb{P}\{X+Y\le z\},\quad z\in \mathbb{R} \\ \because & X\in (0,1), Y\in(0,1) \\ \therefore & Z = X+Y \in (0,2)\\ \therefore & z < 0 \text{时, } F_{Z}(z) = 0\\ & 0 \le z < 1 \text{时, } \displaystyle F_{Z}(z) = \iint\limits_{x+y <z}f(x,y) \cdot d\sigma \\ & \displaystyle = \int_{0}^{z}dx \int_{0}^{z-x}1\cdot dy \\ & 1 \le z < 2 \text{时, } \displaystyle F_{Z}(z) = \iint\limits_{x+y < z}f(x,y) \cdot d\sigma \\ & \displaystyle = 1 - \int_{z-1}^{1}dx \int_{z-x}^{1}1\cdot dy\\ \therefore & f_{Z}(z) = \begin{cases} z, & 0< z < 1 \\ 2-z,& 1 < z < 2\\ 0, & \text{其他} \end{cases} \\ \end{array}

Trulli
Fig.1.2 - 例1.2的积分范围

FZ(z)=P{Zz}=P{XYz}=P{zXYz}zRX(0,1),Y(0,1)Z=XY(0,1)z<0时,FZ(z)=00<z<1时, FZ(z)=X+Y<zf(x,y)dσ=1xy>zf(x,y)dσyx>zf(x,y)dσ=1z1dx0xz1dyz1dy0yz1dx=12z1dx0xz1dyz>1时, FZ(z)=1fZ(z)={2(1z),0<z<10,其他 \begin{array}{ll} & F_{Z}(z) = \mathbb{P}\{Z\le z\} = \mathbb{P}\{\vert X- Y \vert \le z\} \\ & = \mathbb{P}\{-z \le X-Y \le z\} \quad z\in \mathbb{R} \\ \because & X \in (0,1), Y \in (0,1) \\ \therefore & Z = \vert X-Y \vert \in (0,1) \\ \therefore & z < 0 \text{时,} F_{Z}(z) = 0 \\ & \displaystyle 0<z<1 \text{时, } F_{Z}(z) = \iint\limits_{\vert X+Y \vert < z} f(x,y)\cdot d\sigma \\ & = \displaystyle 1 - \iint\limits_{x - y > z} f(x,y)\cdot d\sigma - \iint\limits_{y-x > z} f(x,y)\cdot d\sigma \\ & \displaystyle = 1 - \int_{z}^{1}dx \int_{0}^{x-z}1\cdot dy - \int_{z}^{1}dy \int_{0}^{y- z}1\cdot dx \\ & \displaystyle = 1 - 2\int_{z}^{1}dx \int_{0}^{x-z}1\cdot dy \\ & z > 1 \text{时, } F_{Z}(z) =1 \\ \therefore & f_{Z}(z) = \begin{cases} 2(1-z), & 0 < z < 1 \\ 0, & \text{其他} \end{cases} \\ \end{array}

  1. 设随机变量 X,YX,Y 相互独立,且 XN(0,1),YN(0,1)X\sim \mathcal{N}(0,1), Y\sim \mathcal{N}(0,1),求 Z=X+YZ = X+Y 的密度函数 fZ(z)f_{Z}(z)
    Trulli
    Fig.2 - 例2的积分范围

P{Zz}=P{X+Yz}zRXN(0,1),YN(0,1)X(,+),Y(,+)Z=X+Y(,+)X,Y独立f(x,y)=fX(x)fY(y)=12πex2+y22FZ(z)=x+yzf(x,y)dσFZ(z)=+dxzx12πex2+y22dyfZ(z)=+12πex2+(zx)22dx=+12πe2x22zx+z22dx=e12z22+12πe2(x12z)22=1π2ez24+12π12e(x12z)22×12=12π2ez22×22ZN(0,2) \begin{array}{ll} & \mathbb{P}\{Z\le z\} = \mathbb{P}\{X+Y\le z\}\quad z\in \mathbb{R} \\ \because & X\sim \mathcal{N}(0,1), Y\sim \mathcal{N}(0,1) \\ \therefore & X\in (-\infty,+\infty), Y\in(-\infty,+\infty) \\ \therefore & Z = X+Y \in (-\infty,+\infty) \\ \because & X,Y \text{独立} \\ \therefore & f(x,y) = f_{X}(x)f_{Y}(y) = \frac{1}{2\pi}e^{-\frac{x^{2}+y^{2}}{2}} \\ \because & \displaystyle F_{Z}(z) = \iint\limits_{x+y \le z}f(x,y)\cdot d\sigma \\ \therefore & \displaystyle F_{Z}(z) = \int_{-\infty}^{+\infty} dx \int_{-\infty}^{z - x}\frac{1}{2\pi}e^{-\frac{x^{2}+y^{2}}{2}}\cdot dy\\ \therefore & \displaystyle f_{Z}(z) = \int_{-\infty}^{+\infty} \frac{1}{2\pi}e^{- \frac{x^{2} + (z-x)^{2}}{2}} \cdot dx \\ & \displaystyle = \int_{-\infty}^{+\infty}\frac{1}{2\pi}e^{-\frac{2x^{2} - 2zx + z^{2}}{2}}\cdot dx = e^{-\frac{\frac{1}{2}z^{2}}{2}} \int_{-\infty}^{+\infty}\frac{1}{2\pi}e^{\frac{2(x-\frac{1}{2}z)^{2}}{2}} \\ & \displaystyle = \frac{1}{\sqrt{\pi} 2}e^{-\frac{z^{2}}{4}} \int_{-\infty}^{+\infty}\frac{1}{\sqrt{2\pi} \sqrt{\frac{1}{2}}}e^{-\frac{(x-\frac{1}{2}z)^{2}}{2\times \frac{1}{2}}} \\ & \displaystyle = \frac{1}{\sqrt{2\pi}\sqrt{2}} e^{-\frac{z^{2}}{2\times \sqrt{2}^{2}}}\\ \therefore & Z\sim \mathcal{N}(0, 2) \\ \end{array}

  • ==== 一般地 XN(μ1,σ12),YN(μ2,σ22)X\sim \mathcal{N}(\mu_{1},\sigma_{1}^{2}),Y\sim \mathcal{N}(\mu_{2},\sigma_{2}^{2})X,YX,Y 独立,则 Z=aX+bY+cN(aμ1+bμ2+c,a2σ12+b2σ22)Z=aX+bY+c\sim \mathcal{N}(a\mu_{1}+b\mu_{2}+c, a^{2}\sigma_{1}^{2} + b^{2}\sigma_{2}^{2})
  • X,YX,Y 相互独立,且 XE(1),YE(2)X\sim E(1), Y\sim E(2),求 Z=min{X,Y}Z = \min\{X,Y\} 的概率密度 fZ(x)f_{Z}(x) XE(1),YE(2)fX(x)={ex,x>00,x0fY(y)={2e2y,y>00,y0FZ(x)=P{Zx}=P{min(X,Y)x}=1P{X>x,Y>x}X,Y独立FZ(z)=1[1FX(x)][1FY(x)]=1exe2x=1e3xfZ(x)={3e3x,x>00,x0ZE(3) \begin{array}{ll} \because & X\sim E(1), Y \sim E(2) \\ \therefore & f_{X}(x) = \begin{cases} e^{-x}, & x > 0 \\ 0 , & x \le 0 \end{cases} \\ & f_{Y}(y) = \begin{cases} 2e^{-2y}, & y > 0 \\ 0 , & y \le 0 \end{cases} \\ \because & F_{Z}(x) = \mathbb{P}\{Z \le x\} = \mathbb{P}\{\min(X,Y)\le x\} \\ & = 1 - \mathbb{P}\{X>x, Y>x\} \\ \because & X,Y \text{独立} \\ \therefore & F_{Z}(z) = 1 - [1-F_{X}(x)][1-F_{Y}(x)] \\ & = 1 - e^{-x}e^{-2x} = 1- e^{-3x} \\ \therefore & f_{Z}(x) = \begin{cases} 3 e^{-3x}, & x > 0 \\ 0, & x \le 0 \end{cases} \\ \therefore & Z\sim E(3) \\ \end{array}
  • ==== 一般地 XE(λ1),YE(λ2)X\sim E(\lambda_{1}), Y\sim E(\lambda_{2}),且 X,YX,Y 独立,则 Z=min{X,Y}E(λ1+λ2)Z=\min\{X,Y\} \sim E(\lambda_{1}+\lambda_{2})

results matching ""

    No results matching ""