Section02_离散型随机变量

基本概念

  1. 定义 取值为有限个或可列个的随机变量
  2. 分布律 (概率分布)
    1. P{X=xi}=pi,i=1,2,\mathbb{P}\{X = x_{i}\} = p_{i},\quad i = 1,2,\cdots
    2. X(x1x2xnp1p2pn)X\sim \left( \begin{matrix} x_{1}& x_{2}& \cdots & x_{n} \\ p_{1}& p_{2}& \cdots & p_{n} \end{matrix} \right)
    3. 列表 Xx1x2xnPp1p2pn \begin{array}{|c|cccc|} \hline X & x_{1} & x_{2} & \cdots & x_{n}\\ \hline P & p_{1} & p_{2} & \cdots & p_{n}\\ \hline \end{array}
  3. 求概率 P{aXb}=axibP{X=xi} \mathbb{P}\{a\le X\le b\} = \sum_{a\le x_{i}\le b}^{} \mathbb{P}\{X=x_{i}\}

例题

  1. 设随机变量 X(101ab16)X\sim \left( \begin{matrix} -1 & 0 & 1\\ a & b & \frac{1}{6} \end{matrix} \right),且 P{X=1}=P{X=0}\mathbb{P}\{\vert X \vert = 1\} = \mathbb{P}\{X=0\},求
    1. 常数 a,ba,b 的值
    2. XX 的分布函数 F(x)F(x) {a+b+16=1a+16=b{a=13b=12F(x)={0,x<113,1x<056,0x<11,x1 \begin{array}{ll} & \begin{cases} a + b + \frac{1}{6} = 1 \\ a + \frac{1}{6} = b \\ \end{cases} \\ \therefore & \begin{cases} a = \frac{1}{3} \\ b = \frac{1}{2} \end{cases} \\ \\ & F(x) = \begin{cases} 0, & x<-1 \\ \frac{1}{3}, & -1\le x< 0 \\ \frac{5}{6}, & 0 \le x < 1 \\ 1, & x\ge 1 \end{cases} \end{array}

常见离散型分布

  1. 010-1 分布 X(011pp) or P{X=k}=(1p)1kpk,k=0,1 X\sim \left( \begin{matrix} 0 & 1 \\ 1-p & p \end{matrix} \right) \text{ or } \mathbb{P}\{X=k\} = (1-p)^{1-k}p^{k}, \quad k=0,1
  2. 二项分布 XB(n,p)X\sim B(n,p) P{X=k}=Cnkpk(1p)nk,k=0,1,2,,n \mathbb{P}\{X=k\} = C_{n}^{k} p^{k}(1-p)^{n-k},\quad k = 0,1,2,\cdots,n
    • 注1 nn 次独立重复的贝努利试验中,事件 AA 发生的次数 XB(n,p),p=P(A)X\sim B(n,p), p = \mathbb{P}(A)
    • 注2 k=0nCnkpk(1p)nk=[p+(1p)]n=1\displaystyle \sum_{k=0}^{n}C_{n}^{k}p^{k}(1-p)^{n-k} = [p + (1-p)]^{n} = 1
  3. 泊松分布 XP(λ)X\sim P(\lambda) P{X=k}=λkk!eλ(λ>0,k=0,1,2,) \mathbb{P}\{X=k\} = \frac{\lambda^{k}}{k!}e^{-\lambda}\quad(\lambda >0,k = 0,1,2,\cdots)
    • k=0λkk!eλ=eλk=0λkk!=k=0xkk!=exeλeλ=1\displaystyle \sum_{k=0}^{\infty}\frac{\lambda^{k}}{k!} e^{-\lambda} = e^{-\lambda} \sum_{k=0}^{\infty}\frac{\lambda^{k}}{k!} \xlongequal{\sum\limits_{k=0}^{\infty} \frac{x^{k}}{k!} = e^{x}} e^{-\lambda}e^{\lambda}=1
  4. 几何分布 P{X=k}=(1p)k1p(k=1,2,) \mathbb{P}\{X=k\} = (1-p)^{k-1}p\quad (k=1,2,\cdots)
    • 注1 k=1(1p)k1p=p1(1p)=1\displaystyle \sum_{k=1}^{\infty} (1-p)^{k-1}p = \frac{p}{1 - (1-p)} = 1
    • 注2 源于有截止的贝努利试验,如:射击进行到首次命中为止,总共进行的射击次数X几何分布X\sim \text{几何分布}
  5. 超几何分布(以古典概型考察)

例题

  1. 设随机变量 XP(λ)X\sim P(\lambda)P{X=1}=P{X=2}\mathbb{P}\{X=1\} = \mathbb{P}\{X=2\},求 P{0<x2<3}\mathbb{P}\{0<x^{2}<3\} XP(λ),P{X=1}=P{X=2}λ11!eλ=λ22!eλλ22λ=0λ=2P{X=k}=2kk!e2(k=0,1,2,)P{0<x2<3}=P{x=1}=2e2 \begin{array}{ll} \because & X\sim P(\lambda), \mathbb{P}\{X=1\}=\mathbb{P}\{X=2\} \\ \therefore & \frac{\lambda^{1}}{1!}e^{-\lambda} = \frac{\lambda^{2}}{2!}e^{-\lambda} \\ & \lambda^{2} - 2\lambda = 0 \\ \therefore & \lambda = 2 \\ \therefore & \mathbb{P}\{X=k\} = \frac{2^{k}}{k!}e^{-2} \quad (k=0,1,2,\cdots)\\ \therefore & \mathbb{P}\{0<x^{2}<3\} = \mathbb{P}\{x = 1\} = 2e^{-2} \\ \end{array}
  2. 设某人独立重复地掷骰子,直到掷出1点为止,XX表示该人总共掷骰子的次数,求 P{X=10}\mathbb{P}\{X=10\} P{X=10}=(116)9(16)=59610 \begin{array}{ll} \mathbb{P}\{X=10\} = (1-\frac{1}{6})^{9} (\frac{1}{6}) = \frac{5^{9}}{6^{10}} \end{array}

泊松定理

  • ThXB(n,p)X\sim B(n,p)nn很大,pp很小,npnp适中,则 XapproxP(np) X \overset{\text{approx}}{\sim} P(np)

results matching ""

    No results matching ""