Section02_卡方、t、F分布

χ2\chi^{2}分布

Trulli
Fig.1 - 各种自由度下的卡方分布图像
  1. 构造X1,X2,,XnX_{1},X_{2},\cdots,X_{n} 独立同 N(0,1)\mathcal{N}(0,1) 分布,则 χ2=i=1nXi2χ2(n) \chi^{2} = \sum_{i=1}^{n}X_{i}^{2}\sim \chi^{2}(n)
  2. 性质
    1. XN(0,1)X\sim \mathcal{N}(0,1),则 X2χ2(1),EX2=1,DX2=2X^{2}\sim \chi^{2}(1), EX^{2} = 1, DX^{2} = 2

      Proof EX2=DX+(EX)2=1DX2=EX4(EX2)2=EX41=+x412πex22dx1=31=2 \begin{array}{ll} & EX^{2} = DX + (EX)^{2} = 1 \\ & DX^{2} = EX^{4} - (EX^{2})^{2} = EX^{4} - 1 \\ & \displaystyle = \int_{-\infty}^{+\infty}x^{4}\frac{1}{\sqrt{2\pi}}e^{-\frac{x^{2}}{2}} \cdot dx - 1 \\ & = 3 - 1 = 2 \end{array}

    2. χ2χ2(n)\chi^{2}\sim \chi^{2}(n),则 Eχ2=n,Dχ2=2nE\chi^{2} = n, D\chi^{2} = 2n
    3. 可加性χ12χ2(n1); χ22χ(n2)\chi^{2}_{1}\sim \chi^{2}(n_{1});\ \chi_{2}^{2}\sim \chi(n_{2}),且 χ12\chi_{1}^{2}χ22\chi_{2}^{2} 独立,则 χ12+χ22χ2(n1+n2)\chi^{2}_{1} + \chi^{2}_{2} \sim \chi^{2}(n_{1}+ n_{2})
  3. 上侧 α\alpha 分位点
    1. XN(0,1),Y=X2χ2(1)X\sim \mathcal{N}(0,1), Y = X^{2}\sim \chi^{2}(1),求 fY(y)f_{Y}(y) FY(y)=P{Yy}=P{X2y}={0,y<0yyfX(x)dx,y0fX(x)=12πex22y0时, FY(y)=yyfX(x)dx=yy12πex22dxfy(y)=dFY(y)dy=12πey2(12y+12y)=12πyey2fY(y)={0,y<012πyey2,y0 \begin{array}{ll} & F_{Y}(y) = \mathbb{P}\{Y\le y\} = \mathbb{P}\{X^{2}\le y\} \\ & = \begin{cases} 0, & y<0 \\ \displaystyle \int_{-\sqrt{y}}^{\sqrt{y}}f_{X}(x)\cdot dx,& y \ge 0 \end{cases} \\ \because & \displaystyle f_{X}(x) = \frac{1}{\sqrt{2\pi}}e^{-\frac{x^{2}}{2}} \\ \therefore & \text{当} y\ge 0 \text{时, }\displaystyle F_{Y}(y) = \int_{-\sqrt{y}}^{\sqrt{y}}f_{X}(x)\cdot dx \\ & \displaystyle = \int_{-\sqrt{y}}^{\sqrt{y}}\frac{1}{\sqrt{2\pi}}e^{-\frac{x^{2}}{2}} \cdot dx \\ \therefore & \displaystyle f_{y}(y) = \frac{dF_{Y}(y)}{dy} = \frac{1}{\sqrt{2\pi}}e^{-\frac{y}{2}} \bigg(\frac{1}{2 \sqrt{y}}+ \frac{1}{2 \sqrt{y}}\bigg) \\ & = \frac{1}{\sqrt{2\pi y}} e^{-\frac{y}{2}} \\ \therefore & f_{Y}(y) = \begin{cases} 0, & y < 0 \\ \frac{1}{\sqrt{2\pi y}}e^{-\frac{y}{2}}, & y \ge 0 \end{cases} \\ \end{array}
    2. XN(0,1),YN(0,1)X\sim \mathcal{N}(0,1), Y\sim \mathcal{N}(0,1),且X,YX,Y独立,则Z=X2+Y2χ2(2)Z=X^{2}+Y^{2}\sim \chi^{2}(2) fZ(z)={12ez2,z00,z<0 f_{Z}(z) = \begin{cases} \frac{1}{2}e^{\frac{-z}{2}}, & z \ge 0 \\ 0, & z< 0 \end{cases}
      • Zχ2(2)Z\sim \chi^{2}(2) 相当于 ZE(12)Z\sim E(\frac{1}{2})
    3. n3,χ2(n)n\ge 3, \chi^{2}(n) 的概率密度草图
      • P{χ2>χα2)(n)}=α\mathbb{P}\{\chi^{2}>\chi^{2}_{\alpha})(n)\} = \alphaχα2(n)\chi^{2}_{\alpha}(n) 为自由度为 nnχ2\chi^{2} 上侧 α\alpha 分位点
      • χα2(n)\chi^{2}_{\alpha}(n) 从几何上看,指该点右侧面积为 α\alpha

例题

  1. X1,X2,X3,X4X_{1},X_{2},X_{3},X_{4} 是来自正态总体 N(0,22)\mathcal{N}(0,2^{2}) 的简单随机样本,X=a(X12X2)2+b(3X34X4)2,a0,b0X= a(X_{1}- 2X_{2})^{2} + b(3X_{3} -4X_{4})^{2}, a\ne 0, b\ne 0,当a=a=        b=b=        时,XX服从χ2\chi^{2}分布,其自由度为         XiN(0,22),i=1,2,3,4X12X2N(0,22+22×22=20)3X34X4N(0,32×22+42×22=100)X=a(X12X2)2+b(3X34X4)2χ2a(X12X2)N(0,1)b(3X34X4)N(0,1)a=1D(X12X2)=120b=1D(3X34X4)=1100Xχ2(2){a=120b=1100n=2 \begin{array}{ll} \because & X_{i}\sim \mathcal{N}(0,2^{2}),\quad i = 1,2,3,4 \\ \therefore & X_{1}- 2X_{2} \sim \mathcal{N}(0, 2^{2} + 2^{2}\times 2^{2} = 20) \\ & 3X_{3}- 4X_{4} \sim \mathcal{N}(0, 3^{2}\times 2^{2} + 4^{2}\times 2^{2} = 100) \\ \because & X = a(X_{1}- 2X_{2})^{2} + b(3X_{3} - 4X_{4})^{2}\sim \chi^{2} \\ \therefore & \sqrt{a}(X_{1}-2X_{2}) \sim \mathcal{N}(0,1) \\ & \sqrt{b}(3X_{3}-4X_{4}) \sim \mathcal{N}(0,1) \\ \therefore & a = \frac{1}{D(X_{1} - 2X_{2})} = \frac{1}{20} \\ & b = \frac{1}{D(3X_{3} - 4X_{4})} = \frac{1}{100} \\ \therefore & X \sim \chi^{2}(2) \\\\ \therefore & \begin{cases} a = \frac{1}{20} \\ b = \frac{1}{100} \\ n = 2 \end{cases} \\ \end{array}

tt 分布

  1. 构造 XN(0,1),Yχ2(n)X\sim \mathcal{N}(0,1), Y\sim \chi^{2}(n),且 X,YX,Y 独立,则 T=XY/nt(n) T = \frac{X}{\sqrt{Y/n}} \sim t(n)
  2. 上侧α\alpha分位点

    • P{T>tα(n)}=α\mathbb{P}\{T>t_{\alpha}(n)\} = \alpha,称 tα(n)t_{\alpha}(n)t(n)t(n) 的上侧 α\alpha 分位点

例题

  1. 设随机变量 XXYY 相互独立,且都服从正态分布 N(0,32)\mathcal{N}(0,3^{2}),而 X1,X2,X3,,X9X_{1}, X_{2},X_{3},\cdots,X_{9}Y1,Y2,,Y9Y_{1}, Y_{2},\cdots ,Y_{9} 分别是来自总体 XXYY 的简单随机样本,则统计量 U=X1+X2++X9Y12+Y22+Y92\displaystyle U = \frac{X_{1}+X_{2}+\cdots+X_{9}}{\sqrt{Y_{1}^{2} + Y_{2}^{2}+ \cdots Y_{9}^{2}}} 服从        分布,自由度为         X1+X2++X9N(0,92)19(X1+X2++X9)N(0,1)Y3N(0,1)19(Y12+Y22++Y92)χ2(9)U=19(X1+X2++X9)19×9(Y12+Y22++Y92)t(9)U服从t分布,自由度为9 \begin{array}{ll} & X_{1}+X_{2}+\cdots + X_{9}\sim \mathcal{N}(0, 9^{2}) \\ \therefore & \frac{1}{9}(X_{1} + X_{2} + \cdots + X_{9}) \sim \mathcal{N}(0,1) \\ \because & \frac{Y}{3}\sim \mathcal{N}(0,1) \\ \therefore & \frac{1}{9}(Y_{1}^{2} + Y_{2}^{2}+\cdots+Y_{9}^{2})\sim\chi^{2}(9) \\ \therefore & U = \frac{\frac{1}{9}(X_{1}+X_{2}+\cdots+X_{9})}{\sqrt{\frac{1}{9\times 9}(Y_{1}^{2} + Y_{2}^{2}+\cdots+Y_{9}^{2})}} \sim t(9) \\\\ \therefore & U \text{服从} t \text{分布,自由度为}9 \\ \end{array}

FF 分布

  1. 构造Xχ2(n1),Yχ2(n2)X\sim \chi^{2}(n_{1}), Y\sim \chi^{2}(n_{2})X,YX,Y 独立,则 F=X/n1Y/n2F(n1,n2) F = \frac{X/n_{1}}{Y/n_{2}}\sim F(n_{1},n_{2})
  2. 性质
    1. FF(n1,n2)F\sim F(n_{1},n_{2}),则 1FF(n2,n1)\frac{1}{F}\sim F(n_{2},n_{1})
    2. Tt(n)T\sim t(n),则 T2=(XY/n)2=X2/1Y/nF(1,n)1T2F(n,1)T^{2} = (\frac{X}{\sqrt{Y/n}})^{2} = \frac{X^{2}/1}{Y/n}\sim F(1,n)\Rightarrow \frac{1}{T^{2}}\sim F(n,1)
  3. 上侧 α\alpha 分位点

    • P{F>Fα(n1,n2)}=α\mathbb{P}\{F>F_{\alpha}(n_{1},n_{2})\} = \alpha

例题

  1. (X1,X2,X3,X4)(X_{1},X_{2},X_{3},X_{4}) 为来自总体 XN(0,1)X\sim \mathcal{N}(0,1) 的一个样本,指出下列随机变量服从的分布
    1. X12X_{1}^{2}
    2. X12+X22X_{1}^{2} + X_{2}^{2}
    3. (X2+X3)22\frac{(X_{2}+X_{3})^{2}}{2}
    4. 2X1X22+X32\frac{\sqrt{2}X_{1}}{\sqrt{X_{2}^{2}+X_{3}^{2}}}
    5. 2X1X2+X3\frac{\sqrt{2}X_{1}}{\vert X_{2}+ X_{3} \vert}
    6. 2X12(X2+X3)2\frac{2X_{1}^{2}}{(X_{2}+X_{3})^{2}}
    7. X12+X22X32+X42\frac{X_{1}^{2}+X_{2}^{2}}{X_{3}^{2}+X_{4}^{2}}
    8. 2X12X22+X32\frac{2X_{1}^{2}}{X_{2}^{2} + X_{3}^{2}} X12χ2(1)X12+X22χ2(2)X2+X32N(0,1)(X2+X3)22χ2(1)2X1X22+X32=X1(X22+X32)/2t(2)2X1X2+X3=2X1(X2+X3)2=X1(X2+X3)2/2t(1)2X12(X2+X3)2=X12(X2+X3)2/2F(1,1)X12+X22X32+X42=(X12+X22)/2(X32+X42)/2F(2,2)2X12X22+X32=X12(X22+X32)/2F(1,2) \begin{array}{ll} & X_{1}^{2}\sim \chi^{2}(1) \\\\ & X_{1}^{2} + X_{2}^{2} \sim \chi^{2}(2) \\\\ \because & \frac{X_{2}+X_{3}}{\sqrt{2}} \sim \mathcal{N}(0,1) \\ \therefore & \frac{(X_{2}+X_{3})^{2}}{2} \sim \chi^{2}(1) \\\\ & \frac{\sqrt{2}X_{1}}{\sqrt{X_{2}^{2}+X_{3}^{2}}} = \frac{X_{1}}{\sqrt{(X_{2}^{2}+X_{3}^{2})/2}} \sim t(2) \\\\ & \frac{\sqrt{2}X_{1}}{\vert X_{2} + X_{3} \vert} = \frac{\sqrt{2}X_{1}}{\sqrt{(X_{2}+X_{3})^{2}}} = \frac{X_{1}}{\sqrt{(X_{2}+X_{3})^{2}/2}} \sim t(1) \\\\ & \frac{2X_{1}^{2}}{(X_{2}+X_{3})^{2}} = \frac{X_{1}^{2}}{(X_{2}+X_{3})^{2}/2} \sim F(1,1) \\\\ & \frac{X_{1}^{2} + X_{2}^{2}}{X_{3}^{2} + X_{4}^{2}} = \frac{(X_{1}^{2}+X_{2}^{2})/2}{(X_{3}^{2}+X_{4}^{2})/2}\sim F(2,2) \\\\ & \frac{2X_{1}^{2}}{X_{2}^{2}+X_{3}^{2}} = \frac{X_{1}^{2}}{(X_{2}^{2}+X_{3}^{2})/2} \sim F(1,2) \end{array}

results matching ""

    No results matching ""