Section04_已知X分布,求X=g(X)的分布

XX 为离散型

  • P{X=xi}=pi,i=1,2,\mathbb{P}\{X=x_{i}\} = p_{i},\quad i = 1,2,\cdots,则P{Y=g(xi)}=pi\mathbb{P}\{Y = g(x_{i})\} = p_{i},若g(xi)g(x_{i})有相同值,应合并

例题

  1. 已知随机变量XX的分布律 X(10120.10.20.30.4)X\sim \left( \begin{matrix} -1 & 0 & 1 & 2 \\ 0.1 & 0.2 & 0.3 &0.4 \end{matrix} \right),求 X2X^{2}max{X,1}\max\{X,1\} 的分布律 X2(0140.20.40.4)max{X,1}(120.60.4) \begin{array}{ll} X^{2} \sim \left( \begin{matrix} 0 & 1 & 4 \\ 0.2& 0.4 & 0.4 \end{matrix} \right) \\ \max \{X, 1\} \sim \left( \begin{matrix} 1 & 2 \\ 0.6 & 0.4 \end{matrix} \right) \end{array}

XX 为连续型 XfX(x)X\sim f_{X}(x)

  • y=g(X)可能为{离散型求分布律连续型先求fy(y)再求fy(y)混合型只求fy(y)y= g(X) \text{可能为} \begin{cases} \text{离散型} & \text{求分布律} \\ \text{连续型} & \text{先求}f_{y}(y)\text{再求}f_{y}(y) \\ \text{混合型} & \text{只求}f_{y}(y) \end{cases}
  • 分布函数法 y=g(X)y = g(X) 的分布函数 fy(y)=P{Yy}=P{g(X)y}=g(x)yfX(t)dt f_{y}(y) = \mathbb{P}\{Y \le y\} = \mathbb{P}\{g(X) \le y\} = \int_{g(x)\le y}^{} f_{X}(t)\cdot dt
    • 关键在于寻找 g(x)yg(x)\le y 的区间
    • YY 为连续型,则 fY(y)=FY(y)\displaystyle f_{Y}(y) = F'_{Y}(y),可
      • 先积分后求导
      • 直接用变先积分求导
        • ddxaxf(t)dt=f(x)\displaystyle \frac{d}{dx}\int_{a}^{x}f(t)\cdot dt = f(x)
        • ddxaφ(x)f(t)dt=φ(x)f[φ(x)]\displaystyle \frac{d}{dx}\int_{a}^{\varphi(x)}f(t)\cdot dt = \varphi'(x)f[\varphi(x)]
        • ddxψ(x)φ(x)f(t)dt=φ(x)f[φ(x)]ψ(x)f[ψ(x)]\displaystyle \frac{d}{dx}\int_{\psi (x)}^{\varphi(x)}f(t)\cdot dt = \varphi'(x)f[\varphi(x)] - \psi'(x)f[\psi(x)]
  • 解题步骤
    1. 讨论 YY 的取值,分段讨论
    2. 找出 g(x)yg(x)\le y 对应的 xx 的区间
    3. 先积后导或采用变限积分的求导

例题

  1. XU(1,2),y=sgn x={1x<00,x=01,x>0X\sim U(-1,2), y = \text{sgn }x = \begin{cases} -1 & x<0 \\ 0, & x=0 \\ 1, & x>0 \\ \end{cases},则 YY 的分布律为 Y(10113023) Y\sim \left( \begin{matrix} -1 & 0 & 1 \\ \frac{1}{3} & 0 & \frac{2}{3} \end{matrix} \right)
  2. 设随机变量 XX 的分布函数为 FX(x)F_{X}(x),则 Y=2X+1Y = 2X+1 的分布函数 FY(y)F_{Y}(y)FY(y)=P{Yy}=P{2X+1y}=P{Xy12}FY(y)=FX(y12) \begin{array}{ll} & F_{Y}(y) = \mathbb{P}\{Y \le y\} = \mathbb{P}\{2X + 1\le y\} = \mathbb{P}\{X \le \frac{y-1}{2}\} \\ \therefore & F_{Y}(y) = F_{X}(\frac{y-1}{2}) \\ \end{array}
  3. XN(μ,σ2)X\sim \mathcal{N}(\mu,\sigma^{2}),证明 Y=XμσN(0,1)Y = \frac{X-\mu}{\sigma}\sim \mathcal{N}(0,1) XN(μ,σ2)Xf(x)=12πσe(xμ)22σ2,X的取值(,+)Y=XμσY的取值范围(,+)FY(y)=P{Yy}=P{Xμσy}=P{Xyσ+μ}FY(y)=FX(yσ+μ)=yσ+μ12πσe(yσ)22σfY(y)=FY(y)fY(y)=12πσey22σ=12πey22YN(0,1) \begin{array}{ll} \because & X\sim \mathcal{N}(\mu,\sigma^{2}) \\ \therefore & X\sim f(x) = \frac{1}{\sqrt{2\pi}\sigma} e^{-\frac{(x-\mu)^{2}}{2\sigma^{2}}}, X \text{的取值}(-\infty,+\infty)\\ \because & Y = \frac{X-\mu}{\sigma} \\ \therefore & Y \text{的取值范围} (-\infty,+\infty) \\ \because & F_{Y}(y) = \mathbb{P}\{Y \le y\} = \mathbb{P}\{\frac{X-\mu}{\sigma}\le y\} = \mathbb{P}\{X\le y\sigma+\mu\} \\ \therefore &\displaystyle F_{Y}(y) = F_{X}(y\sigma + \mu) = \int_{-\infty}^{y\sigma + \mu} \frac{1}{\sqrt{2\pi}\sigma}e^{-\frac{(y\sigma)^{2}}{2\sigma}}\\ \because & f_{Y}(y) = F'_{Y}(y) \\ \therefore & f_{Y}(y) = \frac{1}{\sqrt{2\pi}\sigma}e^{-\frac{y^{2}}{2}}\cdot \sigma = \frac{1}{\sqrt{2\pi}}e^{-\frac{y^{2}}{2}} \\ \therefore & Y \sim \mathcal{N}(0,1) \\ \end{array}
  4. 设随机变量 XX 的概率密度为 f(x)={32x2,1<x<10,其他f(x)= \begin{cases} \frac{3}{2}x^{2}, & -1 < x < 1 \\ 0, & \text{其他} \end{cases} 求随机变量 Y=X2+1Y = X^{2} + 1 的概率密度函数 f(y)f(y) X(1,1)Y=X2+1[1,2)F(y)=P{Yy}=P{X2+1y}=P{y1Xy1}F(y)=x2yf(x)dx=y1y1f(x)dxWhen y[1,2),F(y)=y1y132x2dxf(y)=F(y)=(y1)32(y1)(y1)32(y1)=(y1)3(y1)=32y1f(y)={32y1,1y<20,others \begin{array}{ll} \because & X \in (-1, 1) \\ \therefore & Y = X^{2} + 1\in [1,2) \\\\ & F(y) = \mathbb{P}\{Y\le y\} = \mathbb{P}\{X^{2} + 1 \le y\} = \mathbb{P}\{-\sqrt{y-1} \le X\le \sqrt{y-1}\} \\ \therefore & F(y) = \displaystyle \int_{x^{2}\le y}^{} f(x)\cdot dx = \int_{-\sqrt{y-1}}^{\sqrt{y-1}}f(x)\cdot dx \\ \therefore &\displaystyle \text{When y}\in [1,2), F(y) = \int_{-\sqrt{y-1}}^{\sqrt{y-1}}\frac{3}{2}x^{2}\cdot dx \\ \therefore & f(y) = F'(y) = (\sqrt{y-1})'\frac{3}{2}(y-1) - (-\sqrt{y-1})' \frac{3}{2}(y-1) = (\sqrt{y-1})'3(y-1) \\ & = \frac{3}{2}\sqrt{y-1} \\ \therefore & f(y) = \begin{cases} \frac{3}{2}\sqrt{y-1}, & 1\le y < 2 \\ 0,& \text{others} \end{cases} \\ \end{array}
  5. XE(λ),Y=min{X,2}X\sim E(\lambda), Y = \min\{X,2\},求 FY(y)F_{Y}(y),并请回答 YY 是否为连续变量? XE(λ)fX(x)={λeλx,x>00,x0,X的取值范围(0,+)Y=min{X,2}Y的取值范围(0,2)Y<0,F(y)=0Y2,F(y)=10Y<2:F(y)=P{Yy}=P{Xy}=FX(y)=0yλeλx=1eλyF(y)={0,y<01eλy,0y<21,y2f(2)f(20)Y不为连续型随机变量,无密度 \begin{array}{ll} \because & X\sim E(\lambda) \\ \therefore & f_{X}(x) = \begin{cases} \lambda e^{-\lambda x}, & x > 0 \\ 0, & x\le 0 \end{cases}, X \text{的取值范围}(0,+\infty) \\ \because & Y = \min\{X,2\} \\ \therefore & Y \text{的取值范围}(0,2) \\ \therefore & Y < 0, F(y) = 0\\ & Y \ge 2, F(y) = 1 \\ & 0 \le Y < 2: \\ & \displaystyle F(y) = \mathbb{P}\{Y \le y\} = \mathbb{P}\{X\le y\} = F_{X}(y) \\ & \displaystyle = \int_{0}^{y}\lambda e^{-\lambda x} = 1 - e^{-\lambda y} \\ \therefore & F(y) = \begin{cases} 0, & y < 0 \\ 1- e^{-\lambda y}, & 0 \le y < 2 \\ 1, & y \ge 2 \\ \end{cases} \\ \because & f(2) \ne f(2-0) \\ \therefore & Y \text{不为连续型随机变量,无密度} \\ \end{array}

results matching ""

    No results matching ""