Section02_二维随机变量

二维离散型随机变量

  1. 定义 取值有限对或可列对
  2. 联合分布律
    1. P{X=xi,Y=yj}=pij,i,j=1,2,\mathbb{P}\{X=x_{i},Y = y_{j}\} = p_{ij},\quad i,j= 1,2,\cdots
    2. y1y2yjx1p11p12p1jp1x2p21p22p2jp2xipi1pi2pijpip1p2pj \begin{array}{c|ccccc|c} & y_{1} & y_{2} & \cdots & y_{j} & \cdots & \\ \hline x_{1} & p_{11} & p_{12} & \cdots & p_{1j} & \cdots & p_{1\cdot} \\ x_{2} & p_{21} & p_{22} & \cdots & p_{2j} & \cdots & p_{2\cdot}\\ \vdots & \vdots & \vdots & \ddots &\vdots & \vdots & \vdots \\ x_{i} & p_{i1} & p_{i2} & \cdots & p_{ij} & \cdots & p_{i\cdot}\\ \vdots & \vdots & \vdots & \vdots &\vdots & \vdots & \vdots \\ \hline & p_{\cdot 1} & p_{\cdot 2} & \cdots & p_{\cdot j} & \cdots \end{array}
      • 联合概率分布 P{X=xi,Y=yj}=pij\mathbb{P}\{X=x_{i}, Y = y_{j}\} = p_{ij}
      • 边缘概率分布
        • P{X=xi}=pi=j=1P{X=xi,Y=yj}\displaystyle \mathbb{P}\{X = x_{i}\} = p_{i\cdot} = \sum_{j=1}^{\infty}\mathbb{P}\{X=x_{i}, Y = y_{j}\}
        • P{Y=yj}=pj=i=1P{X=xi,Y=yj}\displaystyle \mathbb{P}\{Y = y_{j}\} = p_{\cdot j} = \sum_{i=1}^{\infty}\mathbb{P}\{X=x_{i}, Y = y_{j}\}
  3. 求概率 (找点求概率之和) P{(X,Y)D}=(xi,yj)DP{X=xi,Y=yj} \mathbb{P}\{(X,Y)\in \mathbb{D}\} = \mathop{\sum\sum}_{(x_{i},y_{j})\in \mathbb{D}} \mathbb{P}\{X = x_{i}, Y = y_{j}\}
  4. 边缘分布律 P{X=xi}=P{X=xi,Y<+}=j=1P{X=xi,Y=yj}=j=1pijpii=1,2,P{Y=yj}=P{X<+,Y=yj}=i=1P{X=xi,Y=yj}=i=1pijpjj=1,2, \begin{split} \mathbb{P}\{X = x_{i}\} & = \mathbb{P}\{X=x_{i}, Y < +\infty\} \\ & = \sum_{j=1}^{\infty}\mathbb{P}\{X=x_{i}, Y = y_{j}\} \\ & = \sum_{j=1}^{\infty}p_{ij} \\ & \triangleq p_{i\cdot} \quad i = 1,2,\cdots \\\\ \mathbb{P}\{Y = y_{j}\} & = \mathbb{P}\{X< +\infty, Y = y_{j}\} \\ & = \sum_{i=1}^{\infty}\mathbb{P}\{X=x_{i}, Y = y_{j}\} \\ & = \sum_{i=1}^{\infty}p_{ij} \\ & \triangleq p_{\cdot j} \quad j = 1,2,\cdots \end{split}
    • 联合分布律 \substack{\rightarrow\\ \nleftarrow} 边缘分布律
  5. 条件分布律
    1. P{X=xi}=pi>0\mathbb{P}\{X=x_{i}\} = p_{i\cdot} > 0,则 P{Y=yjX=xi}=P{X=xi,Y=yj}P{X=xi}=pijpi\mathbb{P}\{Y = y_{j}\vert X = x_{i}\}= \frac{\mathbb{P}\{X=x_{i}, Y = y_{j}\}}{\mathbb{P}\{X= x_{i}\}} = \frac{p_{ij}}{p_{i\cdot}}YX=xi(y1y2yjpi1pipi2pipijpi)Y\vert X = x_{i}\sim \left( \begin{matrix} y_{1} & y_{2} & \cdots & y_{j} & \cdots \\ \frac{p_{i1}}{p_{i\cdot}} & \frac{p_{i2}}{p_{i\cdot}} & \cdots & \frac{p_{ij}}{p_{i\cdot}} & \cdots \\ \end{matrix} \right) 称为 X=xiX= x_{i} 条件下,YY 的分布律
    2. P{Y=yj}=pj>0\mathbb{P}\{Y=y_{j}\} = p_{\cdot j } > 0,则 P{X=xiY=yj}=P{X=xi,Y=yj}P{Y=yj}=pijpj\mathbb{P}\{X = x_{i}\vert Y = y_{j}\}= \frac{\mathbb{P}\{X=x_{i}, Y = y_{j}\}}{\mathbb{P}\{Y= y_{j}\}} = \frac{p_{ij}}{p_{\cdot j}}XY=yj(x1x2xjp1jpjp2jpjpijpj)X \vert Y = y_{j}\sim \left( \begin{matrix} x_{1} & x_{2} & \cdots & x_{j} & \cdots \\ \frac{p_{1j}}{p_{\cdot j}} & \frac{p_{2j}}{p_{\cdot j}} & \cdots & \frac{p_{ij}}{p_{\cdot j}} & \cdots \\ \end{matrix} \right) 称为 Y=yjY= y_{j} 条件下,XX 的分布律

例题

  1. 已知随机变量 X,YX,Y 同分布,X(011434)X\sim \left( \begin{matrix} 0 & 1 \\ \frac{1}{4} & \frac{3}{4} \end{matrix} \right),且 P{XY1}=38\mathbb{P}\{XY\ne 1\} = \frac{3}{8},则 P{X+Y1}=\mathbb{P}\{X+Y\le 1\} =          X,Y同分布Y(011434)P{X+Y1}=1P{X=1,Y=1}=38P{X=1,Y=1}=58Y=0Y=1X=0181814X=11858341434P{X+Y1}=1P{X+Y>1}=1P{X=1,Y=1}=38 \begin{array}{ll} \because & X,Y \text{同分布} \\ \therefore & Y\sim \left( \begin{matrix} 0 & 1 \\ \frac{1}{4} & \frac{3}{4} \end{matrix} \right)\\ \because & \mathbb{P}\{X+Y\le 1\} = 1 - \mathbb{P}\{X=1,Y=1\} = \frac{3}{8}\\ \therefore & \mathbb{P}\{X=1,Y=1\} = \frac{5}{8} \\ \therefore & \begin{array}{c|cc|c} & Y = 0 & Y = 1 \\ \hline X =0 & \color{#D0104C}\frac{1}{8} & \color{#D0104C}\frac{1}{8} & \frac{1}{4}\\ X =1 & \color{#D0104C}\frac{1}{8} & \frac{5}{8} & \frac{3}{4} \\ \hline & \frac{1}{4} & \frac{3}{4} \end{array} \\ \therefore & \mathbb{P}\{X+Y\le 1\} = 1 - \mathbb{P}\{X+Y > 1\}\\ & = 1- \mathbb{P}\{X=1,Y=1\} = \frac{3}{8}\\ \end{array}

二维连续型随机变量

  1. 定义(X,Y)(X,Y) 的联合分布函数: F(x,y)=P{Xx,Yy}=xyf(u,v)dudv \begin{split} F(x,y) & = \mathbb{P}\{X\le x, Y\le y\} \\ & = \int_{-\infty}^{x}\int_{-\infty}^{y}f(u,v)\cdot dudv \end{split}
    • 其中 f(x,y)f(x,y) 非负可积,称 (X,Y)(X,Y) 为二维连续型随机变量,f(x,y)f(x,y) 为密度函数
    • F(x,y)F(x,y)必处处连续,2F(x,y)xy=f(x,y)\frac{\partial^{2}{F(x,y)}}{\partial{x}\partial{y}} = f(x,y)
  2. f(x,y)f(x,y) 为密度 \Leftrightarrow {f(x,y)0++f(x,y)dxdy=1\begin{cases} f(x,y)\le 0 \\ \displaystyle \int_{-\infty}^{+\infty}\int_{-\infty}^{+\infty}f(x,y)\cdot dxdy = 1 \end{cases}
    • f(x,y)f(x,y)不唯一,边界可忽略
    • (X,Y)(X,Y)f(x,y)>0f(x,y)>0(x,y)(x,y)
  3. 求概率 P{(X,Y)D}=Df(x,y)dσ \mathbb{P}\{(X,Y)\in \mathbb{D}\} = \iint\limits_{\mathbb{D}}f(x,y)\cdot d\sigma
  4. 边缘密度 fX(x)=+f(x,y)dyfY(y)=+f(x,y)dx \begin{array}{ll} & \displaystyle f_{X}(x) = \int_{-\infty}^{+\infty}f(x,y)\cdot dy \\ & \displaystyle f_{Y}(y) = \int_{-\infty}^{+\infty}f(x,y)\cdot dx \\ \end{array}
  5. 条件密度
    • fX(x)0f_{X}(x)\ne 0 时,称 fYX(yx)=f(x,y)fX(x)f_{Y\vert X}(y\vert x) = \frac{f(x,y)}{f_{X}(x)}X=x (fX(x)>0)X=x\ (f_{X}(x)>0) 的条件下,YY 的密度
    • fY(y)0f_{Y}(y)\ne 0 时,称 fXY(xy)=f(x,y)fY(y)f_{X\vert Y}(x\vert y) = \frac{f(x,y)}{f_{Y}(y)}Y=y (fY(y)>0)Y=y\ (f_{Y}(y)>0) 的条件下,XX 的密度
    • +fYX(yx)dy=+f(x,y)fX(x)dy=fX(x)fX(x)=1\displaystyle \int_{-\infty}^{+\infty}f_{Y\vert X}(y\vert x)\cdot dy = \int_{-\infty}^{+\infty}\frac{f(x,y)}{f_{X}(x)}\cdot dy = \frac{f_{X}(x)}{f_{X}(x)} = 1

例题

  1. 设二维随机变量 (X,Y)(X,Y) 的概率密度函数为 f(x,y)={k(6xy),0<x<2,2<y<40,其他f(x,y) = \begin{cases} k(6-x-y), & 0<x<2,2<y<4 \\ 0, & \text{其他} \end{cases},求:
    1. 常数 kk
    2. P{X<1.5}\mathbb{P}\{X<1.5\}
    3. P{X+Y4}\mathbb{P}\{X+Y\le 4\}
    4. (X,Y)(X,Y) 的联合分布函数值 F(1,5)F(1,5) ++f(x,y)dxdy=102dx24f(x,y)dy=02k(62x)dx=k(6xx2)02=1k=18P{X<1.5}=P{0<X<1.5,2<Y<4}P{X<1.5}=01.5dx24f(x,y)dx=18(6xx2)01.5=2732P{X+Y4}=x+y4f(x,y)dσ=02dx24xf(x,y)dyP{X+Y4}=23F(1,5)=P{X1,Y5}=P{0<X<1,2<Y<4}F(1,5)=01dx24f(x,y)dy=58 \begin{array}{ll} \because & \displaystyle \int_{-\infty}^{+\infty}\int_{-\infty}^{+\infty}f(x,y)\cdot dxdy = 1 \\ \therefore & \displaystyle \int_{0}^{2}dx \int_{2}^{4}f(x,y)\cdot dy = \int_{0}^{2}k(6 - 2x)\cdot dx \\ & \displaystyle = k(6x - x^{2})\vert^{2}_{0} = 1 \\ \therefore & k = \frac{1}{8} \\ \\ \because & \mathbb{P}\{X<1.5\} = \mathbb{P}\{0<X<1.5, 2<Y< 4\} \\ \therefore & \displaystyle \mathbb{P}\{X<1.5\} = \int_{0}^{1.5} dx \int_{2}^{4}f(x,y)\cdot dx = \frac{1}{8}(6x - x^{2})\vert_{0}^{1.5} = \frac{27}{32} \\\\ \because & \displaystyle \mathbb{P}\{X+Y \le 4\} = \iint\limits_{x+y\le 4} f(x,y)\cdot d\sigma = \int_{0}^{2}dx \int_{2}^{4-x}f(x,y)\cdot dy\\ \therefore & \mathbb{P}\{X+Y\le 4\} = \frac{2}{3}\\ \\ \because & F(1,5) = \mathbb{P}\{X\le 1, Y\le 5\} = \mathbb{P}\{0 < X < 1, 2< Y <4\}\\ \therefore & \displaystyle F(1,5) = \int_{0}^{1}dx \int_{2}^{4} f(x,y)\cdot dy = \frac{5}{8} \\ \end{array}
      Trulli
      Fig.1 - 例1.3的积分范围
  2. 设二维随机变量 (X,Y)(X,Y) 的概率密度为 f(x,y)={6,0<x<1,x2<y<x0,其他f(x,y) = \begin{cases} 6, & 0<x<1, x^{2} < y < x \\ 0, & \text{其他} \end{cases},求 fX(x)f_{X}(x)fY(y)f_{Y}(y)
    Trulli
    Fig.1 - 例2的概率密度的范围

fX(x)=+f(x,y)dy=x2xf(x,y)dxfY(y)=+f(x,y)dx=yyf(x,y)dxf(x,y)={6,0<x<1,x2<y<x0,其他fX(x)={6(xx2),0<x<10,其他fY(y)={6(yy),0<y<10,其他 \begin{array}{ll} & \displaystyle f_{X}(x) = \int_{-\infty}^{+\infty}f(x,y) \cdot dy = \int_{x^{2}}^{x}f(x,y)\cdot dx \\ & \displaystyle f_{Y}(y) = \int_{-\infty}^{+\infty}f(x,y) \cdot dx = \int_{y}^{\sqrt{y}}f(x,y)\cdot dx \\ \because & f(x,y) = \begin{cases} 6, & 0<x<1,x^{2}<y<x \\ 0, & \text{其他} \end{cases} \\ \therefore & f_{X}(x) = \begin{cases} 6(x - x^{2}), & 0 < x < 1 \\ 0, & \text{其他} \end{cases} \\ & f_{Y}(y) = \begin{cases} 6(\sqrt{y}-y), & 0 < y < 1 \\ 0, & \text{其他} \end{cases} \end{array}

  1. 设二维随机变量 (X,Y)(X,Y) 的概率密度为 f(x,y)={6,0<x<1,x2<y<x0,其他f(x,y) = \begin{cases} 6, & 0<x<1, x^{2} < y < x \\ 0, & \text{其他} \end{cases},求 fXY(xy)f_{X\vert Y}(x\vert y)fYX(yx)f_{Y\vert X}(y\vert x) fXY(xy)=f(x,y)fY(y);fYX(yx)=f(x,y)fX(x)fXY(xy)={1yy,y<x<y0,其他fYX(yx)={1xx2x2<y<x0,其他 \begin{array}{ll} \because & f_{X\vert Y}(x\vert y) = \frac{f(x,y)}{f_{Y}(y)}; f_{Y\vert X}(y\vert x) = \frac{f(x,y)}{f_{X}(x)} \\ \therefore & f_{X\vert Y}(x\vert y) = \begin{cases} \frac{1}{\sqrt{y}-y}, & y< x< \sqrt{y} \\ 0, & \text{其他} \end{cases} \\ & f_{Y\vert X}(y\vert x) = \begin{cases} \frac{1}{x-x^{2}} & x^{2}<y<x \\ 0, & \text{其他} \end{cases} \end{array}

补充 离连型二维随机变量

  • X(123131313)X\sim \left( \begin{matrix} 1 & 2 & 3 \\ \frac{1}{3} & \frac{1}{3} & \frac{1}{3} \end{matrix} \right),在 X=i,(i=1,2,3)X=i,\quad(i=1,2,3) 的条件下,YU(0,i)Y\sim U(0,i),求 P{Y1}\mathbb{P}\{Y\le 1\}

    • 分析 由题可得图

      graph LR; id1(start); id2.1(X1); id2.2(X2); id2.3(X3); id3(Y); id1 --1/3--> id2.1 --"U(0,1)"--> id3 id1 --1/3--> id2.2 --"U(0,2)"--> id3 id1 --1/3--> id2.3 --"U(0,3)"--> id3

      P{Y1}=i=13P{X=i}P{Y1X=i}=i=13131i=1118 \begin{array}{ll} \therefore & \mathbb{P}\{Y\le 1\} = \sum\limits_{i=1}^{3}\mathbb{P}\{X=i\}\mathbb{P}\{Y\le 1\vert X=i\} \\ & = \sum\limits_{i=1}^{3}\frac{1}{3} \frac{1}{i} = \frac{11}{18} \end{array}

    • 碰到离连型随机变量求概率,总是视==离散型的取值情况为完备事件组==,使用==全概率公式求解==

results matching ""

    No results matching ""