Section03_大数定律和中心极限定理
大数定律
记住
1 n ∑ i = 1 n Y i → P E ( 1 n ∑ i = 1 n Y i )
\frac{1}{n}\sum_{i=1}^{n}Y_{i} \xrightarrow{P} E\bigg(\frac{1}{n}\sum_{i=1}^{n}Y_{i}\bigg)
n 1 i = 1 ∑ n Y i P E ( n 1 i = 1 ∑ n Y i )
例题
设随机变量序列 { X n } \{X_{n}\} { X n } 相互独立,且服从于参数为 2 2 2 的指数分布,则当 n → ∞ n\to \infty n → ∞ 时,1 n ∑ i = 1 n X i 2 \frac{1}{n}\sum\limits_{i=1}^{n}X^{2}_{i} n 1 i = 1 ∑ n X i 2 依概率收敛于
∵ 1 n ∑ i = 1 n X i 2 → P 1 n E ( ∑ i = 1 n X i 2 ) = 1 n ∑ i = 1 n E X i 2 X i ∼ E ( 2 ) ∴ E X i 2 = D X + ( E X ) 2 = 1 2 2 + 1 2 2 = 1 2 ∴ 1 n ∑ i = 1 n E X i 2 = 1 n × n × 1 2 = 1 2 ∴ 1 n ∑ i = 1 n X i 2 → P 1 2
\begin{array}{ll}
\because & \frac{1}{n}\sum\limits_{i=1}^{n}X_{i}^{2}\xrightarrow{P} \frac{1}{n}E(\sum\limits_{i=1}^{n}X^{2}_{i}) = \frac{1}{n}\sum\limits_{i=1}^{n}EX_{i}^{2}\\
& X_{i}\sim E(2) \\
\therefore & EX_{i}^{2} = DX + (EX)^{2} = \frac{1}{2^{2}} + \frac{1}{2^{2}} = \frac{1}{2} \\
\therefore & \frac{1}{n}\sum\limits_{i=1}^{n}EX_{i}^{2} = \frac{1}{n}\times n\times \frac{1}{2} = \frac{1}{2} \\
\therefore & \frac{1}{n}\sum\limits_{i=1}^{n}X_{i}^{2}\xrightarrow{P} \frac{1}{2} \\
\end{array}
∵ ∴ ∴ ∴ n 1 i = 1 ∑ n X i 2 P n 1 E ( i = 1 ∑ n X i 2 ) = n 1 i = 1 ∑ n E X i 2 X i ∼ E ( 2 ) E X i 2 = D X + ( EX ) 2 = 2 2 1 + 2 2 1 = 2 1 n 1 i = 1 ∑ n E X i 2 = n 1 × n × 2 1 = 2 1 n 1 i = 1 ∑ n X i 2 P 2 1
设随机变量序列 X 1 , X 2 , ⋯ , X n , ⋯ X_{1},X_{2},\cdots,X_{n},\cdots X 1 , X 2 , ⋯ , X n , ⋯ 独立同分布,且 X i X_{i} X i 的概率密度为 f ( x ) = { 1 − ∣ x ∣ , ∣ x ∣ < 1 0 , 其他 f(x) = \begin{cases} 1 - \vert x \vert, & \vert x \vert <1 \\ 0, & \text{其他} \end{cases} f ( x ) = { 1 − ∣ x ∣ , 0 , ∣ x ∣ < 1 其他 ,则 n → ∞ n\to \infty n → ∞ 时,1 n ∑ i = 1 n X i 2 \frac{1}{n}\sum\limits_{i=1}^{n}X_{i}^{2} n 1 i = 1 ∑ n X i 2 依概率收敛于
∵ f ( x ) = { 1 − ∣ x ∣ , ∣ x ∣ < 1 0 , 其他 ∴ E X 2 = ∫ − 1 1 x 2 ( 1 − ∣ x ∣ ) ⋅ d x = 2 ∫ 0 1 x 2 ( 1 − x ) ⋅ d x = 1 6 ∵ 1 n ∑ i = 1 n X i 2 → P 1 n E ( ∑ i = 1 n X i 2 ) = 1 n ∑ i = 1 n E X i 2 X 1 , ⋯ , X n 独立同分布 ∴ 1 n ∑ i = 1 n E X i 2 = 1 n × n × 1 6 = 1 6 ∴ 1 n ∑ i = 1 n X i 2 → P 1 6
\begin{array}{ll}
\because & f(x) = \begin{cases}
1-\vert x \vert, & \vert x \vert <1 \\
0, & \text{其他}
\end{cases} \\
\therefore & \displaystyle EX^{2} = \int_{-1}^{1}x^{2}(1-\vert x \vert)\cdot dx = 2 \int_{0}^{1}x^{2}(1-x)\cdot dx = \frac{1}{6} \\
\because & \frac{1}{n}\sum\limits_{i=1}^{n}X_{i}^{2}\xrightarrow{P} \frac{1}{n}E(\sum\limits_{i=1}^{n}X^{2}_{i}) = \frac{1}{n}\sum\limits_{i=1}^{n}EX_{i}^{2}\\
& X_{1},\cdots, X_{n} \text{独立同分布} \\
\therefore & \frac{1}{n}\sum\limits_{i=1}^{n}EX_{i}^{2} = \frac{1}{n}\times n\times \frac{1}{6} = \frac{1}{6} \\
\therefore & \frac{1}{n}\sum\limits_{i=1}^{n}X_{i}^{2}\xrightarrow{P}\frac{1}{6} \\
\end{array}
∵ ∴ ∵ ∴ ∴ f ( x ) = { 1 − ∣ x ∣ , 0 , ∣ x ∣ < 1 其他 E X 2 = ∫ − 1 1 x 2 ( 1 − ∣ x ∣ ) ⋅ d x = 2 ∫ 0 1 x 2 ( 1 − x ) ⋅ d x = 6 1 n 1 i = 1 ∑ n X i 2 P n 1 E ( i = 1 ∑ n X i 2 ) = n 1 i = 1 ∑ n E X i 2 X 1 , ⋯ , X n 独立同分布 n 1 i = 1 ∑ n E X i 2 = n 1 × n × 6 1 = 6 1 n 1 i = 1 ∑ n X i 2 P 6 1
中心极限定理
记住
∑ i = 1 n X i ∼ approx N ( E ∑ i = 1 n X i , D ∑ i = 1 n X i )
\sum_{i=1}^{n}X_{i} \overset{\text{approx}}{\sim} \mathcal{N}(E \sum_{i=1}^{n}X_{i}, D \sum_{i=1}^{n}X_{i})
i = 1 ∑ n X i ∼ approx N ( E i = 1 ∑ n X i , D i = 1 ∑ n X i )
例题
设随机变量 X 1 , X 2 , ⋯ , X 32 X_{1},X_{2},\cdots, X_{32} X 1 , X 2 , ⋯ , X 32 相互独立同分布,且 X i ∼ E ( 2 ) X_{i}\sim E(2) X i ∼ E ( 2 ) ,记 X = ∑ i = 1 32 X i X = \sum\limits_{i=1}^{32}X_{i} X = i = 1 ∑ 32 X i ,p 1 = P { X < 16 } , p 2 = P { X > 12 } p_{1}= \mathbb{P}\{X<16\}, p_{2}=\mathbb{P}\{X>12\} p 1 = P { X < 16 } , p 2 = P { X > 12 } ,用中心极限定理近似计算可得( )
A. p 1 = p 2 p_{1} = p_{2} p 1 = p 2
B. p 1 < p 2 p_{1}<p_{2} p 1 < p 2
C. p 1 > p 2 p_{1}>p_{2} p 1 > p 2
D. p 1 , p 2 p_{1},p_{2} p 1 , p 2 大小不能确定
∵ X = ∑ i = 1 32 X i ∼ approx N ( E ∑ i = 1 32 X i , D ∑ i = 1 32 X 2 ) E ∑ i = 1 32 X i = ∑ i = 1 32 E X i = 32 × 1 2 = 16 D ∑ i = 1 32 X i = ∑ i = 1 32 D X i = 32 × 1 2 2 = 8 ∴ X ∼ approx N ( 16 , 8 ) ∴ p 1 = P { X < 16 } < P { X > 12 } = p 2 ∴ 选 B
\begin{array}{ll}
\because & X = \sum\limits_{i=1}^{32}X_{i}\overset{\text{approx}}{\sim} \mathcal{N}(E\sum\limits_{i=1}^{32}X_{i},D\sum\limits_{i=1}^{32}X_{2}) \\
& E\sum\limits_{i=1}^{32}X_{i} = \sum\limits_{i=1}^{32}EX_{i} = 32\times \frac{1}{2} = 16 \\
& D \sum\limits_{i=1}^{32}X_{i} = \sum\limits_{i=1}^{32}DX_{i} = 32\times \frac{1}{2^{2}} = 8 \\
\therefore & X \overset{\text{approx}}{\sim} \mathcal{N}(16,8) \\
\therefore & p_{1} = \mathbb{P}\{X<16\} < \mathbb{P}\{X>12\} = p_{2} \\
\therefore & \text{选} B \\
\end{array}
∵ ∴ ∴ ∴ X = i = 1 ∑ 32 X i ∼ approx N ( E i = 1 ∑ 32 X i , D i = 1 ∑ 32 X 2 ) E i = 1 ∑ 32 X i = i = 1 ∑ 32 E X i = 32 × 2 1 = 16 D i = 1 ∑ 32 X i = i = 1 ∑ 32 D X i = 32 × 2 2 1 = 8 X ∼ approx N ( 16 , 8 ) p 1 = P { X < 16 } < P { X > 12 } = p 2 选 B