Section03_大数定律和中心极限定理

大数定律

  • 记住 1ni=1nYiPE(1ni=1nYi) \frac{1}{n}\sum_{i=1}^{n}Y_{i} \xrightarrow{P} E\bigg(\frac{1}{n}\sum_{i=1}^{n}Y_{i}\bigg)

例题

  1. 设随机变量序列 {Xn}\{X_{n}\} 相互独立,且服从于参数为 22 的指数分布,则当 nn\to \infty 时,1ni=1nXi2\frac{1}{n}\sum\limits_{i=1}^{n}X^{2}_{i} 依概率收敛于          1ni=1nXi2P1nE(i=1nXi2)=1ni=1nEXi2XiE(2)EXi2=DX+(EX)2=122+122=121ni=1nEXi2=1n×n×12=121ni=1nXi2P12 \begin{array}{ll} \because & \frac{1}{n}\sum\limits_{i=1}^{n}X_{i}^{2}\xrightarrow{P} \frac{1}{n}E(\sum\limits_{i=1}^{n}X^{2}_{i}) = \frac{1}{n}\sum\limits_{i=1}^{n}EX_{i}^{2}\\ & X_{i}\sim E(2) \\ \therefore & EX_{i}^{2} = DX + (EX)^{2} = \frac{1}{2^{2}} + \frac{1}{2^{2}} = \frac{1}{2} \\ \therefore & \frac{1}{n}\sum\limits_{i=1}^{n}EX_{i}^{2} = \frac{1}{n}\times n\times \frac{1}{2} = \frac{1}{2} \\ \therefore & \frac{1}{n}\sum\limits_{i=1}^{n}X_{i}^{2}\xrightarrow{P} \frac{1}{2} \\ \end{array}
  2. 设随机变量序列 X1,X2,,Xn,X_{1},X_{2},\cdots,X_{n},\cdots 独立同分布,且 XiX_{i} 的概率密度为 f(x)={1x,x<10,其他f(x) = \begin{cases} 1 - \vert x \vert, & \vert x \vert <1 \\ 0, & \text{其他} \end{cases},则 nn\to \infty 时,1ni=1nXi2\frac{1}{n}\sum\limits_{i=1}^{n}X_{i}^{2} 依概率收敛于         f(x)={1x,x<10,其他EX2=11x2(1x)dx=201x2(1x)dx=161ni=1nXi2P1nE(i=1nXi2)=1ni=1nEXi2X1,,Xn独立同分布1ni=1nEXi2=1n×n×16=161ni=1nXi2P16 \begin{array}{ll} \because & f(x) = \begin{cases} 1-\vert x \vert, & \vert x \vert <1 \\ 0, & \text{其他} \end{cases} \\ \therefore & \displaystyle EX^{2} = \int_{-1}^{1}x^{2}(1-\vert x \vert)\cdot dx = 2 \int_{0}^{1}x^{2}(1-x)\cdot dx = \frac{1}{6} \\ \because & \frac{1}{n}\sum\limits_{i=1}^{n}X_{i}^{2}\xrightarrow{P} \frac{1}{n}E(\sum\limits_{i=1}^{n}X^{2}_{i}) = \frac{1}{n}\sum\limits_{i=1}^{n}EX_{i}^{2}\\ & X_{1},\cdots, X_{n} \text{独立同分布} \\ \therefore & \frac{1}{n}\sum\limits_{i=1}^{n}EX_{i}^{2} = \frac{1}{n}\times n\times \frac{1}{6} = \frac{1}{6} \\ \therefore & \frac{1}{n}\sum\limits_{i=1}^{n}X_{i}^{2}\xrightarrow{P}\frac{1}{6} \\ \end{array}

中心极限定理

  • 记住 i=1nXiapproxN(Ei=1nXi,Di=1nXi) \sum_{i=1}^{n}X_{i} \overset{\text{approx}}{\sim} \mathcal{N}(E \sum_{i=1}^{n}X_{i}, D \sum_{i=1}^{n}X_{i})
    • 大量随机变量之和,近似正态分布

例题

  1. 设随机变量 X1,X2,,X32X_{1},X_{2},\cdots, X_{32} 相互独立同分布,且 XiE(2)X_{i}\sim E(2),记 X=i=132XiX = \sum\limits_{i=1}^{32}X_{i}p1=P{X<16},p2=P{X>12}p_{1}= \mathbb{P}\{X<16\}, p_{2}=\mathbb{P}\{X>12\},用中心极限定理近似计算可得( ) A. p1=p2p_{1} = p_{2} B. p1<p2p_{1}<p_{2} C. p1>p2p_{1}>p_{2} D. p1,p2p_{1},p_{2} 大小不能确定 X=i=132XiapproxN(Ei=132Xi,Di=132X2)Ei=132Xi=i=132EXi=32×12=16Di=132Xi=i=132DXi=32×122=8XapproxN(16,8)p1=P{X<16}<P{X>12}=p2B \begin{array}{ll} \because & X = \sum\limits_{i=1}^{32}X_{i}\overset{\text{approx}}{\sim} \mathcal{N}(E\sum\limits_{i=1}^{32}X_{i},D\sum\limits_{i=1}^{32}X_{2}) \\ & E\sum\limits_{i=1}^{32}X_{i} = \sum\limits_{i=1}^{32}EX_{i} = 32\times \frac{1}{2} = 16 \\ & D \sum\limits_{i=1}^{32}X_{i} = \sum\limits_{i=1}^{32}DX_{i} = 32\times \frac{1}{2^{2}} = 8 \\ \therefore & X \overset{\text{approx}}{\sim} \mathcal{N}(16,8) \\ \therefore & p_{1} = \mathbb{P}\{X<16\} < \mathbb{P}\{X>12\} = p_{2} \\ \therefore & \text{选} B \\ \end{array}

results matching ""

    No results matching ""