Section03_正定二次型

概念

  • f=XAXf = \boldsymbol{X}^{\intercal}\boldsymbol{AX},若  X0\forall\ \boldsymbol{X} \ne \boldsymbol{0}XAX>0\boldsymbol{X}^{\intercal}\boldsymbol{AX} > 0,称 XAX\boldsymbol{X}^{\intercal}\boldsymbol{AX}正定二次型A\boldsymbol{A}正定矩阵

判别法

定义法

步骤

  1. A=A\boldsymbol{A}^{\intercal}= \boldsymbol{A}
  2.  X0\forall\ \boldsymbol{X} \ne \boldsymbol{0},证 XAX>0\boldsymbol{X}^{\intercal}\boldsymbol{AX} > 0

例题

  1. A,B\boldsymbol{A},\boldsymbol{B} 正定,证 A+B\boldsymbol{A}+\boldsymbol{B} 正定 A,B正定 X0,XAX>0,XBX>0 X0,X(A+B)X>0A+B正定 \begin{array}{ll} \because & \boldsymbol{A},\boldsymbol{B} \text{正定} \\ \therefore & \forall\ \boldsymbol{X}\ne \boldsymbol{0}, \boldsymbol{X}^{\intercal}\boldsymbol{AX} > 0, \boldsymbol{X}^{\intercal}\boldsymbol{B}\boldsymbol{X} > 0 \\ \therefore & \forall\ \boldsymbol{X} \ne 0, \boldsymbol{X}^{\intercal}(\boldsymbol{A}+ \boldsymbol{B})\boldsymbol{X}>0 \\ \therefore & \boldsymbol{A}+ \boldsymbol{B}\text{正定} \\ \end{array}
  2. Am×n,r(A)=n,B=AA\boldsymbol{A}_{m\times n}, r(\boldsymbol{A}) = n, \boldsymbol{B} = \boldsymbol{A}^{\intercal}\boldsymbol{A},证 B\boldsymbol{B} 正定 B=AA=B X0,XBX=XAAX=(AX)AXX0,r(A)=nAX0(AX)AX=AX2>0B正定 \begin{array}{ll} & \boldsymbol{B}^{\intercal} = \boldsymbol{A}^{\intercal}\boldsymbol{A} = \boldsymbol{B} \\\\ & \forall\ \boldsymbol{X} \ne \boldsymbol{0}, \boldsymbol{X}^{\intercal}\boldsymbol{B}\boldsymbol{X} = \boldsymbol{X}^{\intercal}\boldsymbol{A}^{\intercal} \boldsymbol{AX} = (\boldsymbol{AX})^{\intercal} \boldsymbol{AX} \\ \because & \boldsymbol{X}\ne 0, r(\boldsymbol{A}) = n \\ \therefore & \boldsymbol{AX} \ne \boldsymbol{0} \\ \therefore & (\boldsymbol{AX})^{\intercal}\boldsymbol{AX} = \vert \boldsymbol{AX} \vert^{2} > 0 \\ \therefore & \boldsymbol{B}\text{正定} \\ \end{array}

特征值法

方法

  • Th AA\boldsymbol{A}^{\intercal}\boldsymbol{A},则 A\boldsymbol{A} 正定 \Leftrightarrow λi>0(1in)\lambda_{i}> 0 \quad(1 \le i \le n)

例题

  1. An×n\boldsymbol{A}_{n\times n} 正定,证 A1\boldsymbol{A}^{-1} 正定 A正定λi>0,A=A(A1)=(A)1=A1A1的特征值1λi>01inA1正定 \begin{array}{ll} \because & \boldsymbol{A}\text{正定} \\ \therefore & \lambda_{i} > 0, \boldsymbol{A}^{\intercal} = \boldsymbol{A}\\ \therefore & (\boldsymbol{A}^{-1})^{\intercal}= (\boldsymbol{A}^{\intercal})^{-1} = \boldsymbol{A}^{-1} \\ & \boldsymbol{A}^{-1}\text{的特征值} \frac{1}{\lambda_{i}} > 0\quad 1 \le i \le n \\ \therefore & \boldsymbol{A}^{-1}\text{正定} \\ \end{array}
  2. An×n\boldsymbol{A}_{n\times n} 正定,证 det(A+2E)>2n\det(\boldsymbol{A} + 2\boldsymbol{E})> 2^{n} An×n正定λi>0,1inA=2E的特征值λi+2det(A+2E)=i=1n(λi+2)det(A+2E)>2n \begin{array}{ll} \because & \boldsymbol{A}_{n\times n}\text{正定} \\ \therefore & \lambda_{i} > 0,\quad 1\le i\le n\\ \therefore & \boldsymbol{A} = 2 \boldsymbol{E}\text{的特征值}\lambda_{i} + 2 \\ \because & \det(\boldsymbol{A} + 2 \boldsymbol{E}) = \prod\limits_{i=1}^{n}(\lambda_{i} +2) \\ \therefore & \det(\boldsymbol{A} + 2\boldsymbol{E}) > 2^{n} \\ \end{array}

顺序主子式法

  • A\boldsymbol{A} 正定 \Leftrightarrow 所有顺序主子式大于零,即 对于A=(a11a12a1na21a22a2nan1an2ann) k[1,n], a11a1kak1akk>0 \begin{array}{ll} & \text{对于} \boldsymbol{A} = \left( \begin{matrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \\ \end{matrix} \right) \\ & \forall\ k \in [1, n],\ \left\vert \begin{matrix} a_{11} & \cdots & a_{1k} \\ \vdots & \ddots & \vdots \\ a_{k1} & \cdots & a_{kk} \end{matrix} \right\vert>0 \end{array}

results matching ""

    No results matching ""