Section02_线性相关与线性表示

背景

  1. 方程组的一般形式 {a11x1++a1nan=0am1x1++amnan=0(){a11x1++a1nan=b1am1x1++amnan=bm() \begin{array}{ll} \begin{cases} a_{11}x_{1}+\cdots +a_{1n}a_{n} = 0 \\ \cdots \\ a_{m1}x_{1}+\cdots +a_{mn}a_{n} = 0 \\ \end{cases} & (*) \\\\ \begin{cases} a_{11}x_{1}+\cdots +a_{1n}a_{n} = b_{1} \\ \cdots \\ a_{m1}x_{1}+\cdots +a_{mn}a_{n} = b_{m} \\ \end{cases} & (**) \end{array}
  2. 方程组的矩阵形式 A=(a11a12a1na21a22a2nam1am2amn)X=(x1x2xn)β=(b1b2bm)AX=0()AX=β() \begin{array}{c} \begin{array}{ll} \boldsymbol{A} = \left( \begin{matrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \\ \end{matrix} \right)\quad \boldsymbol{X} = \left( \begin{matrix} x_{1} \\ x_{2} \\ \vdots \\ x_{n} \\ \end{matrix} \right) \quad \boldsymbol{\beta} = \left( \begin{matrix} b_{1} \\ b_{2} \\ \vdots \\ b_{m} \\ \end{matrix} \right) \end{array} \\\\ \boldsymbol{AX} = \boldsymbol{0}\quad (*)\\ \boldsymbol{AX} = \boldsymbol{\beta}\quad (**)\\ \end{array}
  3. 方程组的向量形式 α1=(a11a21am1), α2=(a12a22am2),, αn=(a1na2namn)x1α1+x2α2++xnαn=0()x1α1+x2α2++xnαn=β() \begin{array}{c} \boldsymbol{\alpha}_{1} = \left( \begin{matrix} a_{11} \\ a_{21} \\ \vdots \\ a_{m1} \end{matrix} \right),\ \boldsymbol{\alpha}_{2} = \left( \begin{matrix} a_{12} \\ a_{22} \\ \vdots \\ a_{m2} \end{matrix} \right),\cdots,\ \boldsymbol{\alpha}_{n} = \left( \begin{matrix} a_{1n} \\ a_{2n} \\ \vdots \\ a_{mn} \end{matrix} \right) \\\\ x_{1}\boldsymbol{\alpha}_{1} + x_{2}\boldsymbol{\alpha}_{2} + \cdots + x_{n}\boldsymbol{\alpha}_{n} = \boldsymbol{0}\quad (*) \\ x_{1}\boldsymbol{\alpha}_{1} + x_{2}\boldsymbol{\alpha}_{2} + \cdots + x_{n}\boldsymbol{\alpha}_{n} = \boldsymbol{\beta} \quad (**)\\ \end{array}

() ()(*)\ (**) 解的概况

  1. () {仅有零解除零解外,有无数非零解(*)\ \begin{cases} \text{仅有零解} \\ \text{除零解外,有无数非零解} \end{cases}
  2. () {有解{唯一解无数解无解(**)\ \begin{cases} \text{有解} \begin{cases} \text{唯一解} \\ \text{无数解} \end{cases} \\ \text{无解} \end{cases}

相关性与线性表示

概念

  1. 相关性 α1,α2,,αn\boldsymbol{\alpha}_{1}, \boldsymbol{\alpha}_{2},\cdots,\boldsymbol{\alpha}_{n} x1α1+x2α2++xnαn=0() x_{1}\boldsymbol{\alpha}_{1} + x_{2}\boldsymbol{\alpha}_{2}+\cdots + x_{n}\boldsymbol{\alpha}_{n} = \boldsymbol{0} \quad (*)
    • Cases 1 ()(*) 仅有零解,称 α1,α2,,αn\boldsymbol{\alpha}_{1}, \boldsymbol{\alpha}_{2},\cdots,\boldsymbol{\alpha}_{n} 线性无关
    • Cases 2 ()(*) 有非零解,称 α1,α2,,αn\boldsymbol{\alpha}_{1}, \boldsymbol{\alpha}_{2},\cdots,\boldsymbol{\alpha}_{n} 线性相关
  2. 线性表示 α1,α2,,αn,β\boldsymbol{\alpha}_{1}, \boldsymbol{\alpha}_{2},\cdots,\boldsymbol{\alpha}_{n}, \boldsymbol{\beta} x1α1+x2α2++xnαn=β() x_{1}\boldsymbol{\alpha}_{1} + x_{2}\boldsymbol{\alpha}_{2}+\cdots + x_{n}\boldsymbol{\alpha}_{n} = \boldsymbol{\beta} \quad (**)
    • Cases 1 ()(**) 有解,称 β\boldsymbol{\beta} 可由 α1,α2,,αn\boldsymbol{\alpha}_{1}, \boldsymbol{\alpha}_{2},\cdots,\boldsymbol{\alpha}_{n} 线性表示
    • Cases 2 ()(**) 无解,称 β\boldsymbol{\beta} 不可由 α2,α2,,αn\boldsymbol{\alpha}_{2}, \boldsymbol{\alpha}_{2},\cdots,\boldsymbol{\alpha}_{n} 线性表示

      性质

  3. α1,,αn\boldsymbol{\alpha}_{1},\cdots,\boldsymbol{\alpha}_{n} 线性相关 \Leftrightarrow 至少一个向量可由其他向量线性表示

    Proof

    \Rightarrow  不全为0k1,kn, 使得k1α1++knαn=0k10α1=k2k1α2knk1αn至少一个向量可由其他向量线性表示 \begin{array}{ll} & \exists\ \text{不全为} 0 \text{的}k_{1},\cdots k_{n}\text{, 使得} \\ & k_{1}\boldsymbol{\alpha}_{1} + \cdots + k_{n}\boldsymbol{\alpha}_{n} = 0 \\ & \text{设}k_{1} \ne 0 \Rightarrow \boldsymbol{\alpha}_{1} = -\frac{k_{2}}{k_{1}}\boldsymbol{\alpha}_{2}-\cdots-\frac{k_{n}}{k_{1}}\boldsymbol{\alpha}_{n} \\ \therefore & \text{至少一个向量可由其他向量线性表示} \\ \end{array} \Leftarrow αk=1α1++nαn(右式中无αk)1α1++(1)αk++nαn=0x1α1+x2α2++xnαn=0 有非零解α1,,αn线性相关 \begin{array}{ll} & \text{设}\boldsymbol{\alpha}_{k} = \ell_{1}\boldsymbol{\alpha}_{1} + \cdots + \ell_{n}\boldsymbol{\alpha}_{n} \quad(\text{右式中无}\boldsymbol{\alpha}_{k}) \\ \therefore & \ell_{1}\boldsymbol{\alpha}_{1} +\cdots + (-1)\boldsymbol{\alpha}_{k} +\cdots + \ell_{n}\boldsymbol{\alpha}_{n} = \boldsymbol{0} \\ & x_{1}\boldsymbol{\alpha}_{1} + x_{2}\boldsymbol{\alpha}_{2}+\cdots + x_{n}\boldsymbol{\alpha}_{n} = \boldsymbol{0} \text{ 有非零解} \\ \therefore & \boldsymbol{\alpha}_{1},\cdots, \boldsymbol{\alpha}_{n} \text{线性相关} \\ \end{array}

    Notes

    1. 含零向量的向量组成线性相关
    2. α,β\boldsymbol{\alpha}, \boldsymbol{\beta} 相关 \Leftrightarrow α,β\boldsymbol{\alpha},\boldsymbol{\beta} 成比例

      Proof \Rightarrow α,β线性相关 不全为零的k1,k2, 使得k1α+k2β=0k10α=k2k1βα,β成比例 \begin{array}{ll} \because & \boldsymbol{\alpha},\boldsymbol{\beta} \text{线性相关}\\ \therefore & \exists\ \text{不全为零的} k_{1}, k_{2} \text{, 使得} \\ & k_{1}\boldsymbol{\alpha} + k_{2}\boldsymbol{\beta} = \boldsymbol{0} \\ & \text{设} k_{1}\ne 0 \Rightarrow \boldsymbol{\alpha} = \frac{k_{2}}{k_{1}}\boldsymbol{\beta} \\ \therefore & \boldsymbol{\alpha}, \boldsymbol{\beta} \text{成比例} \\ \end{array} \Leftarrow α=kβ1×αkα=0x1α+x2β=0有非零解αβ相关 \begin{array}{ll} \because & \boldsymbol{\alpha} = k\boldsymbol{\beta} \\ \therefore & 1\times\boldsymbol{\alpha} - k \boldsymbol{\alpha} = \boldsymbol{0} \\ \therefore & x_{1}\boldsymbol{\alpha} + x_{2}\boldsymbol{\beta} = \boldsymbol{0} \text{有非零解}\\ \therefore & \boldsymbol{\alpha} \text{与} \boldsymbol{\beta} \text{相关} \\ \end{array}

  4. α1,,αn\boldsymbol{\alpha}_{1},\cdots, \boldsymbol{\alpha}_{n} 线性无关
    1. α1,,αn,β\boldsymbol{\alpha}_{1},\cdots, \boldsymbol{\alpha}_{n}, \boldsymbol{\beta} 继续线性无关 \Leftrightarrow β\boldsymbol{\beta} 不可由 α1,,αn\boldsymbol{\alpha}_{1},\cdots, \boldsymbol{\alpha}_{n} 线性表示
    2. α1,,αn,β\boldsymbol{\alpha}_{1},\cdots, \boldsymbol{\alpha}_{n}, \boldsymbol{\beta} 线性相关 \Leftrightarrow β\boldsymbol{\beta} 可由 α1,,αn\boldsymbol{\alpha}_{1},\cdots, \boldsymbol{\alpha}_{n} 线性表示
  5. 全组无关 \Rightarrow 部分组无关
  6. 部分组相关 \Rightarrow 全组相关
  7. ==重点== α1,α2,,αn\boldsymbol{\alpha}_{1}, \boldsymbol{\alpha}_{2},\cdots, \boldsymbol{\alpha}_{n}nnnn 维向量
    1. α1,,αn\boldsymbol{\alpha}_{1},\cdots, \boldsymbol{\alpha}_{n} 线性无关 \Leftrightarrow det(α1,α2,,αn)0\det(\boldsymbol{\alpha}_{1}, \boldsymbol{\alpha}_{2},\cdots, \boldsymbol{\alpha}_{n}) \ne 0
    2. α1,,αn\boldsymbol{\alpha}_{1},\cdots, \boldsymbol{\alpha}_{n} 线性相关 \Leftrightarrow det(α1,α2,,αn)=0\det(\boldsymbol{\alpha}_{1}, \boldsymbol{\alpha}_{2},\cdots, \boldsymbol{\alpha}_{n}) = 0

      Proof

      A=(α1,,αn)\boldsymbol{A} = (\boldsymbol{\alpha}_{1},\cdots ,\boldsymbol{\alpha}_{n}),则 x1α1++xnαn=0AX=0x_{1}\boldsymbol{\alpha}_{1} + \cdots + x_{n}\boldsymbol{\alpha}_{n} = \boldsymbol{0} \Leftrightarrow \boldsymbol{AX} = \boldsymbol{0}

      1. α1,,αn\boldsymbol{\alpha}_{1},\cdots, \boldsymbol{\alpha}_{n} 无关 \Leftrightarrow AX=0\boldsymbol{AX} = \boldsymbol{0} 仅有零解 \Leftrightarrow r(A)=nr(\boldsymbol{A}) = n \Leftrightarrow det(A)0\det(\boldsymbol{A}) \ne 0
      2. α1,,αn\boldsymbol{\alpha}_{1},\cdots, \boldsymbol{\alpha}_{n} 相关 \Leftrightarrow AX=0\boldsymbol{AX} = \boldsymbol{0} 有非零解 \Leftrightarrow r(A)<nr(\boldsymbol{A}) < n \Leftrightarrow det(A)=0\det(\boldsymbol{A}) = 0
  8. α1,,αn\boldsymbol{\alpha}_{1},\cdots, \boldsymbol{\alpha}_{n}nnmm 维向量,且 m<nm<n,则 α1,,αn\boldsymbol{\alpha}_{1},\cdots, \boldsymbol{\alpha}_{n} 一定线性相关

    Proof Am×n=(α1αn)x1α1++xnαn=0AX=0r(A)min{m,n}=m<nAX=0有非零解α1,,αn线性相关\begin{array}{ll} & \boldsymbol{A}_{m\times n} = \left( \begin{matrix} \boldsymbol{\alpha}_{1} & \cdots & \boldsymbol{\alpha}_{n} \end{matrix} \\ \right) \\ & x_{1}\boldsymbol{\alpha}_{1} + \cdots + x_{n}\boldsymbol{\alpha}_{n} = \boldsymbol{0} \Leftrightarrow \boldsymbol{AX} = \boldsymbol{0} \\ \because & r(\boldsymbol{A})\le \min\{m,n\} = m < n \\ \therefore & \boldsymbol{AX} = 0 \text{有非零解} \\ \therefore & \boldsymbol{\alpha}_{1},\cdots, \boldsymbol{\alpha}_{n} \text{线性相关} \\ \end{array}

  9. 向某一向量组中
    1. 加向量,提高相关性
    2. 加维度,提高无关性
  10. α1,,αn\boldsymbol{\alpha}_{1},\cdots, \boldsymbol{\alpha}_{n} 非零,且两两正交 \nLeftarrow \Rightarrow α1,,αn\boldsymbol{\alpha}_{1},\cdots, \boldsymbol{\alpha}_{n} 线性无关

    Proof

    \Rightarrow α1,,αn非零两两正交k1α1++knαn=0(α1,k1α1++knαn)=0k1(α1,α1)=0(α1,α1)=α1α1=α12>0k1=0(α2,k2α2++knαn)=0k2(α2,α2)=0(α2,α2)=α2α2=α22>0k2=0同理可得k1=k2==kn=0x1α1++xnαn=0仅有零解α1,,αn线性无关 \begin{array}{ll} & \text{设} \boldsymbol{\alpha}_{1},\cdots, \boldsymbol{\alpha}_{n} \text{非零两两正交} \\ & \text{令} k_{1}\boldsymbol{\alpha}_{1} + \cdots + k_{n}\boldsymbol{\alpha}_{n} = \boldsymbol{0} \\ \because & (\boldsymbol{\alpha}_{1}, k_{1}\boldsymbol{\alpha}_{1}+\cdots + k_{n}\boldsymbol{\alpha}_{n}) = 0 \\ \therefore & k_{1}(\boldsymbol{\alpha}_{1},\boldsymbol{\alpha}_{1}) = 0 \\ \because & (\boldsymbol{\alpha}_{1},\boldsymbol{\alpha}_{1}) = \boldsymbol{\alpha}^{\intercal}_{1}\boldsymbol{\alpha}_{1} = \vert \boldsymbol{\alpha}_{1} \vert^{2} > 0 \\ \therefore & k_{1} = 0 \\ \because & (\boldsymbol{\alpha}_{2},k_{2}\boldsymbol{\alpha}_{2} + \cdots + k_{n}\boldsymbol{\alpha}_{n}) = 0 \\ \therefore & k_{2}(\boldsymbol{\alpha}_{2},\boldsymbol{\alpha}_{2}) = 0 \\ \because & (\boldsymbol{\alpha}_{2},\boldsymbol{\alpha}_{2}) = \boldsymbol{\alpha}^{\intercal}_{2}\boldsymbol{\alpha}_{2} = \vert \boldsymbol{\alpha}_{2} \vert^{2} > 0 \\ \therefore & k_{2} = 0 \\ & \text{同理可得} k_{1} = k_{2} = \cdots = k_{n} = 0 \\ \therefore & x_{1}\boldsymbol{\alpha}_{1} + \cdots + x_{n}\boldsymbol{\alpha}_{n} = \boldsymbol{0} \text{仅有零解}\\ \therefore & \boldsymbol{\alpha}_{1},\cdots, \boldsymbol{\alpha}_{n} \text{线性无关} \\ \end{array} \nLeftarrowα1=(11),α2=(23)\boldsymbol{\alpha}_{1}= \left( \begin{matrix} 1 \\ 1 \end{matrix} \right), \boldsymbol{\alpha}_{2} = \left( \begin{matrix} 2 \\ 3 \end{matrix} \right)

例题

  1. α1,α2\boldsymbol{\alpha}_{1},\boldsymbol{\alpha}_{2} 线性无关,α3\boldsymbol{\alpha}_{3} 不可由 α1,α2\boldsymbol{\alpha}_{1},\boldsymbol{\alpha}_{2} 线性表示,α4\boldsymbol{\alpha}_{4} 可由 α1,α2\boldsymbol{\alpha}_{1},\boldsymbol{\alpha}_{2} 线性表示,问 α1,α2,α3+α4\boldsymbol{\alpha}_{1}, \boldsymbol{\alpha}_{2}, \boldsymbol{\alpha}_{3} + \boldsymbol{\alpha}_{4} 之间的关系? α1,α2,α3+α4四者线性相关α1,α2线性无关 k1,k2不全为0, 使得α3+α4=k1α1+k2α2α4可由α1,α2线性表示 1,2不全为0使得α4=1α1+2α2α3=(k11)α1+(k22)α2与题意矛盾α1,α2,α3+α4线性无关 \begin{array}{ll} & \text{设} \boldsymbol{\alpha}_{1}, \boldsymbol{\alpha}_{2}, \boldsymbol{\alpha}_{3} + \boldsymbol{\alpha}_{4} \text{四者线性相关} \\ \because & \boldsymbol{\alpha}_{1},\boldsymbol{\alpha}_{2} \text{线性无关} \\ \therefore & \exists\ k_{1},k_{2} \text{不全为}0 \text{, 使得} \\ & \boldsymbol{\alpha}_{3} + \boldsymbol{\alpha}_{4} = k_{1} \boldsymbol{\alpha}_{1} + k_{2}\boldsymbol{\alpha}_{2} \\ \because & \boldsymbol{\alpha}_{4} \text{可由} \boldsymbol{\alpha}_{1},\boldsymbol{\alpha}_{2} \text{线性表示} \\ \therefore & \exists\ \ell_{1},\ell_{2}\text{不全为}0 \text{使得} \\ & \boldsymbol{\alpha}_{4} = \ell_{1}\boldsymbol{\alpha}_{1} + \ell_{2}\boldsymbol{\alpha}_{2} \\ \therefore & \boldsymbol{\alpha}_{3} = (k_{1} - \ell_{1})\boldsymbol{\alpha}_{1} + (k_{2}-\ell_{2})\boldsymbol{\alpha}_{2} \\ & \text{与题意矛盾} \\ \therefore & \boldsymbol{\alpha}_{1}, \boldsymbol{\alpha}_{2}, \boldsymbol{\alpha}_{3} + \boldsymbol{\alpha}_{4} \text{线性无关} \\ \end{array}
  2. α1,α2,α3\boldsymbol{\alpha}_{1}, \boldsymbol{\alpha}_{2}, \boldsymbol{\alpha}_{3} 三者线性无关, α2,α3,α4\boldsymbol{\alpha}_{2}, \boldsymbol{\alpha}_{3}, \boldsymbol{\alpha}_{4} 线性相关,问 α4\boldsymbol{\alpha}_{4} 可否由 α1,α2,α3\boldsymbol{\alpha}_{1},\boldsymbol{\alpha}_{2}, \boldsymbol{\alpha}_{3} 线性表示? α2,α3,α4线性相关α2,α3线性无关 k1,k2不全为0,使得α4=k1α2+k2α3α4=0α1+k1α2+k2α3α4可由α1,α2,α3线性表示 \begin{array}{ll} \because & \boldsymbol{\alpha}_{2}, \boldsymbol{\alpha}_{3}, \boldsymbol{\alpha}_{4}\text{线性相关} \\ & \boldsymbol{\alpha}_{2}, \boldsymbol{\alpha}_{3} \text{线性无关} \\ \therefore & \exists\ k_{1},k_{2}\text{不全为}0 \text{,使得} \\ & \boldsymbol{\alpha}_{4} = k_{1}\boldsymbol{\alpha}_{2}+k_{2}\boldsymbol{\alpha}_{3}\\ \therefore & \boldsymbol{\alpha}_{4} = 0 \boldsymbol{\alpha}_{1} + k_{1}\boldsymbol{\alpha}_{2}+k_{2}\boldsymbol{\alpha}_{3} \\ \therefore & \boldsymbol{\alpha}_{4} \text{可由}\boldsymbol{\alpha}_{1}, \boldsymbol{\alpha}_{2}, \boldsymbol{\alpha}_{3}\text{线性表示} \\ \end{array}
  3. α1=(111)α2=(124)α3=(1aa2)\boldsymbol{\alpha}_{1} = \left( \begin{matrix} 1 \\ 1 \\ 1 \\ \end{matrix} \right) \boldsymbol{\alpha}_{2} = \left( \begin{matrix} 1 \\ -2 \\ 4 \\ \end{matrix} \right) \boldsymbol{\alpha}_{3} = \left( \begin{matrix} 1 \\ a \\ a^{2} \\ \end{matrix} \right) 线性相关,则 a=a=         α1,α2,α3线性相关11112a14a2=0=(a+2)(a1)(21)a=2a=1 \begin{array}{ll} \because & \boldsymbol{\alpha}_{1}, \boldsymbol{\alpha}_{2}, \boldsymbol{\alpha}_{3}\text{线性相关} \\ \therefore & \left\vert \begin{matrix} 1 & 1 & 1 \\ 1 & -2 & a \\ 1 & 4 & a^{2} \\ \end{matrix} \right\vert = 0 = (a+2)(a-1)(-2-1)\\ \therefore & a= -2 \text{或} a=1 \\ \end{array}
  4. α1=(21100)α2=(13010)α3=(12001)\boldsymbol{\alpha}_{1} = \left( \begin{matrix} 2 \\ -1 \\ 1 \\ 0 \\ 0 \end{matrix} \right) \boldsymbol{\alpha}_{2} = \left( \begin{matrix} 1 \\ 3 \\ 0 \\ 1 \\ 0\end{matrix} \right) \boldsymbol{\alpha}_{3} = \left( \begin{matrix} -1 \\ 2 \\ 0 \\ 0 \\ 1 \end{matrix} \right),问三者相关性? 100010001=10(100),(010),(001)三者线性无关α1=(21100)α2=(13010)α3=(12001)线性无关 \begin{array}{ll} \because & \left\vert \begin{matrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \\ \end{matrix} \right\vert = 1 \ne 0\\ \therefore & \left( \begin{matrix} 1 \\ 0 \\ 0 \end{matrix} \right), \left( \begin{matrix} 0 \\ 1 \\ 0 \end{matrix} \right), \left( \begin{matrix} 0 \\ 0 \\ 1 \end{matrix} \right) \text{三者线性无关} \\ \therefore & \boldsymbol{\alpha}_{1} = \left( \begin{matrix} 2 \\ -1 \\ 1 \\ 0 \\ 0 \end{matrix} \right) \boldsymbol{\alpha}_{2} = \left( \begin{matrix} 1 \\ 3 \\ 0 \\ 1 \\ 0\end{matrix} \right) \boldsymbol{\alpha}_{3} = \left( \begin{matrix} -1 \\ 2 \\ 0 \\ 0 \\ 1 \end{matrix} \right) \text{线性无关} \\ \end{array}
  5. α1,α2,α3\boldsymbol{\alpha}_{1},\boldsymbol{\alpha}_{2},\boldsymbol{\alpha}_{3} 三者线性无关,β1=α1+α2,β2=α2+α3,β3=α3+α1\boldsymbol{\beta}_{1} = \boldsymbol{\alpha}_{1} + \boldsymbol{\alpha}_{2}, \boldsymbol{\beta}_{2} = \boldsymbol{\alpha}_{2} + \boldsymbol{\alpha}_{3}, \boldsymbol{\beta}_{3} =\boldsymbol{\alpha}_{3}+\boldsymbol{\alpha}_{1},问 β1,β2,β3\boldsymbol{\beta}_{1},\boldsymbol{\beta}_{2}, \boldsymbol{\beta}_{3} 三者关系? A=(α1α2α3),B=(β1β2β3)B=A(101110011)101110011=1+1=20α1,α2,α3线性无关r(B)=r(A)=3β1,β2,β3三者线性无关 \begin{array}{ll} & \boldsymbol{A} = \left( \begin{matrix} \boldsymbol{\alpha}_{1} & \boldsymbol{\alpha}_{2} &\boldsymbol{\alpha}_{3} \end{matrix} \right), \boldsymbol{B} = \left( \begin{matrix} \boldsymbol{\beta}_{1} & \boldsymbol{\beta}_{2} &\boldsymbol{\beta}_{3} \end{matrix} \right) \\ \therefore & \boldsymbol{B} = \boldsymbol{A} \left( \begin{matrix} 1 & 0 & 1\\ 1 & 1 & 0\\ 0 & 1 & 1 \end{matrix} \right)\\ \because & \left\vert \begin{matrix} 1 & 0 & 1\\ 1 & 1 & 0\\ 0 & 1 & 1 \end{matrix} \right\vert = 1 + 1 =2 \ne 0\\ & \boldsymbol{\alpha}_{1}, \boldsymbol{\alpha}_{2}, \boldsymbol{\alpha}_{3} \text{线性无关} \\ \therefore & r(\boldsymbol{B}) = r(\boldsymbol{A}) = 3 \\ \therefore & \boldsymbol{\beta}_{1}, \boldsymbol{\beta}_{2}, \boldsymbol{\beta}_{3}\text{三者线性无关} \\ \end{array}
  6. α1α4\boldsymbol{\alpha}_{1}\sim \boldsymbol{\alpha}_{4} 线性无关,β1=α1+α2,β2=α2+α3,β3=α3+α4,β4=α4+α1\boldsymbol{\beta}_{1} = \boldsymbol{\alpha}_{1}+ \boldsymbol{\alpha}_{2},\boldsymbol{\beta}_{2} = \boldsymbol{\alpha}_{2}+ \boldsymbol{\alpha}_{3}, \boldsymbol{\beta}_{3} = \boldsymbol{\alpha}_{3}+ \boldsymbol{\alpha}_{4},\boldsymbol{\beta}_{4} = \boldsymbol{\alpha}_{4}+ \boldsymbol{\alpha}_{1},问 β1β4\boldsymbol{\beta}_{1}\sim\boldsymbol{\beta}_{4} 之间的关系?

    A=(α1α2α3α4),B=(β1β2β3β4)B=A(1001110001100011)1001110001100011=0det(B)=0β1,β2,β3,β4线性相关 \begin{array}{ll} & \boldsymbol{A} = \left( \begin{matrix} \boldsymbol{\alpha}_{1} & \boldsymbol{\alpha}_{2} &\boldsymbol{\alpha}_{3} & \boldsymbol{\alpha}_{4} \end{matrix} \right), \boldsymbol{B} = \left( \begin{matrix} \boldsymbol{\beta}_{1} & \boldsymbol{\beta}_{2} &\boldsymbol{\beta}_{3} & \boldsymbol{\beta}_{4} \end{matrix} \right) \\ \therefore & \boldsymbol{B} = \boldsymbol{A} \left( \begin{matrix} 1 & 0 & 0 & 1 \\ 1 & 1 & 0 & 0 \\ 0 & 1 & 1 & 0 \\ 0 & 0 & 1 & 1 \\ \end{matrix} \right)\\ \because & \left\vert \begin{matrix} 1 & 0 & 0 & 1 \\ 1 & 1 & 0 & 0 \\ 0 & 1 & 1 & 0 \\ 0 & 0 & 1 & 1 \\ \end{matrix} \right\vert = 0\\ \therefore & \det(\boldsymbol{B}) = 0 \\ \therefore & \boldsymbol{\beta}_{1},\boldsymbol{\beta}_{2},\boldsymbol{\beta}_{3},\boldsymbol{\beta}_{4}\text{线性相关} \\ \end{array}

results matching ""

    No results matching ""