Section03_行列式的计算性质

Q 如何计算行列式

  1. Da110a22annD \Rightarrow \left\vert \begin{matrix} a_{11} & & & \huge0 \\ & a_{22} & & \\ & & \ddots & \\ \huge * & & & a_{nn} \\ \end{matrix} \right\verta11a220ann\left\vert \begin{matrix} a_{11} & & & \huge * \\ & a_{22} & & \\ & & \ddots & \\ \huge 0 & & & a_{nn} \\ \end{matrix} \right\vert
  2. 降阶

化为三角矩阵

  1. D=DD = D^{\intercal}
  2. 对调两行或列,行列式变为相反数
  3. 一行(或一列)有公因子,可提取
  4. a1+b1c1a2+b2c2=a1c1a2c2+b1c1b2c2\left\vert \begin{matrix} a_{1} + b_{1} & c_{1} \\ a_{2} + b_{2} & c_{2} \end{matrix} \right\vert = \left\vert \begin{matrix} a_{1} & c_{1} \\ a_{2} & c_{2} \\ \end{matrix} \right\vert + \left\vert \begin{matrix} b_{1} & c_{1} \\ b_{2} & c_{2} \\ \end{matrix} \right\vert
  5. 一行的 kk 倍加到另一行 (一列的 kk 倍加到另一列),行列式不变

降阶性质

  1. 某一行或某一列的元素及其代数余子式之积的和等于该行列式
    • A=i=1naijAij\displaystyle \vert A \vert =\sum_{i=1}^{n}a_{ij}A_{ij}
    • A=j=1naijAij\displaystyle \vert A \vert = \sum_{j=1}^{n}a_{ij}A_{ij}
  2. 0=i=1naij1Aij2(j1j2)\displaystyle 0 = \sum_{i=1}^{n}a_{ij_{1}}A_{ij_{2}}\quad(j_{1}\ne j_{2}) (某一行的元素与其他行相对应的代数余子式之积的和为00)

例题

  1. A=(121231145)A = \left( \begin{matrix} 1 & 2 & -1 \\ 2 & 3 & 1 \\ 1 & 4 & -5 \end{matrix} \right),求 det(A)\det(A) det(A)=121231145=121013002=2 \begin{array}{ll} &\det(A) = \left\vert \begin{matrix} 1 & 2 & -1 \\ 2 & 3 & 1 \\ 1 & 4 & -5 \end{matrix} \right\vert = \left\vert \begin{matrix} 1 & 2 & -1 \\ 0 & -1 & 3 \\ 0 & 0 & 2 \end{matrix} \right\vert \end{array} = -2
  2. A=(311131113)A = \left( \begin{matrix} 3 & 1 & 1 \\ 1 & 3 & 1 \\ 1 & 1 & 3 \end{matrix} \right),求 det(A)\det(A) det(A)=555131113=5111020002=20 \det(A) = \left\vert \begin{matrix} 5 & 5 & 5 \\ 1 & 3 & 1 \\ 1 & 1 & 3 \end{matrix} \right\vert = 5 \left\vert \begin{matrix} 1 & 1 & 1 \\ 0 & 2 & 0 \\ 0 & 0 & 2 \end{matrix} \right\vert = 20
  3. a22a001a22a001a22a001a2\left\vert \begin{matrix} a^{2} & 2a & 0 & 0 \\ 1 & a^{2} & 2a & 0 \\ 0 & 1 & a^{2} & 2a \\ 0 & 0 & 1 & a^{2} \\ \end{matrix} \right\vert a22a001a22a001a22a001a2=a2a22a01a22a01a22a12a00a22a01a2=a2a2(a42a)a22aa22a(a42a)=a82a52a52a5+4a2=a86a5+4a2 \begin{array}{ll} & \left\vert \begin{matrix} a^{2} & 2a & 0 & 0 \\ 1 & a^{2} & 2a & 0 \\ 0 & 1 & a^{2} & 2a \\ 0 & 0 & 1 & a^{2} \\ \end{matrix} \right\vert = a^{2} \left\vert \begin{matrix} a^{2} & 2a & 0 \\ 1 & a^{2} & 2a \\ 0 & 1 &a^{2} \end{matrix} \right\vert - 2a \left\vert \begin{matrix} 1 & 2a & 0 \\ 0 & a^{2} & 2a \\ 0 & 1 & a^{2} \end{matrix} \right\vert \\ & = a^{2}a^{2}(a^{4} - 2a) - a^{2}2aa^{2} - 2a (a^{4}-2a) \\ & = a^{8} - 2a^{5} -2a^{5} -2a^{5} + 4a^{2} \\ & = a^{8} - 6a^{5} + 4a^{2} \end{array}
  4. D=1a0001a0001aa001D = \left\vert \begin{matrix} 1 & a & 0 & 0 \\ 0 & 1 & a & 0 \\ 0 & 0 & 1 & a \\ a & 0 & 0 & 1 \\ \end{matrix} \right\vert D=1a0a001aa01=1+a2(a2)=1a4 D=1 - a \left\vert \begin{matrix} 0 & a & 0 \\ 0 & 1 & a \\ a & 0 & 1 \end{matrix} \right\vert = 1 + a^{2}(-a^{2}) = 1-a^{4}

results matching ""

    No results matching ""