Section02_特征值与特征向量的性质

一般性质

  1. (重点) An×n,λ1λ2\boldsymbol{A}_{n\times n}, \lambda_{1}\ne \lambda_{2} (λ1EA)X=0α1,,αsλ1对应的线性无关组(λ2EA)X=0β1,,βtλ2对应的线性无关组α1,,αs,β1,,βt线性无关 \begin{array}{cc} & (\lambda_{1}\boldsymbol{E}-\boldsymbol{A}) \boldsymbol{X} = \boldsymbol{0} \Rightarrow \boldsymbol{\alpha}_{1},\cdots, \boldsymbol{\alpha}_{s} \quad \lambda_{1}\text{对应的线性无关组} \\ & (\lambda_{2}\boldsymbol{E}-\boldsymbol{A}) \boldsymbol{X} = \boldsymbol{0} \Rightarrow \boldsymbol{\beta}_{1},\cdots, \boldsymbol{\beta}_{t} \quad \lambda_{2}\text{对应的线性无关组} \\ \Rightarrow & \boldsymbol{\alpha}_{1},\cdots, \boldsymbol{\alpha}_{s},\boldsymbol{\beta}_{1},\cdots,\boldsymbol{\beta}_{t}\text{线性无关} \end{array}

    Proof Aα1=λ1α1,,Aαs=λ1αsAβ1=λ2β1,,Aβs=λ2βsk1α1++ksαs+1β1++tβt=0()A×():λ1(k1α1++ksαs)+λ2(1β1++tβt)=0()λ2()():(λ2λ1)(k1α1++ksαs)=0λ2λ1k1==ks=01==t=0α1,,αs,β1,,βt线性无关\begin{array}{ll} & \boldsymbol{A\alpha}_{1} = \lambda_{1}\boldsymbol{\alpha}_{1},\cdots,\boldsymbol{A\alpha}_{s} = \lambda_{1}\boldsymbol{\alpha}_{s} \\ & \boldsymbol{A\beta}_{1} = \lambda_{2}\boldsymbol{\beta}_{1},\cdots,\boldsymbol{A\beta}_{s} = \lambda_{2}\boldsymbol{\beta}_{s} \\ & \text{令}k_{1}\boldsymbol{\alpha}_{1} +\cdots +k_{s}\boldsymbol{\alpha}_{s} + \ell_{1}\boldsymbol{\beta}_{1}+\cdots + \ell_{t}\boldsymbol{\beta}_{t} = \boldsymbol{0} \quad(*) \\ \therefore & \boldsymbol{A}\times (*): \\ & \lambda_{1}(k_{1}\boldsymbol{\alpha}_{1} + \cdots + k_{s}\boldsymbol{\alpha}_{s}) + \lambda_{2}(\ell_{1}\boldsymbol{\beta}_{1} + \cdots + \ell_{t}\boldsymbol{\beta}_{t}) = \boldsymbol{0} \quad (**) \\ & \lambda_{2}(*) - (**): \\ & (\lambda_{2}-\lambda_{1})(k_{1}\boldsymbol{\alpha}_{1} + \cdots + k_{s}\boldsymbol{\alpha}_{s}) = \boldsymbol{0} \\ \because & \lambda_{2} \ne \lambda_{1} \\ \therefore & k_{1} = \cdots = k_{s} = 0 \\ \therefore & \ell_{1} = \cdots = \ell_{t} = 0 \\ \therefore & \boldsymbol{\alpha}_{1},\cdots,\boldsymbol{\alpha}_{s},\boldsymbol{\beta}_{1},\cdots,\boldsymbol{\beta}_{t}\text{线性无关} \end{array}

  2. (==重点==) Aα=λ0α\boldsymbol{A\alpha} = \lambda_{0}\boldsymbol{\alpha}
    1. f(A)α=f(λ0)αf(\boldsymbol{A})\boldsymbol{\alpha} = f(\lambda_{0})\boldsymbol{\alpha},如 Aα=λ0αA2α=λ02α\boldsymbol{A\alpha} = \lambda_{0}\boldsymbol{\alpha} \Rightarrow \boldsymbol{A}^{2}\boldsymbol{\alpha} = \lambda_{0}^{2}\boldsymbol{\alpha}
    2. A\boldsymbol{A} 可逆,有 {A1α=1λ0αAα=det(A)λ0α\begin{cases} \boldsymbol{A}^{-1}\boldsymbol{\alpha} = \frac{1}{\lambda_{0}}\boldsymbol{\alpha} \\ \boldsymbol{A}^{*}\boldsymbol{\alpha} = \frac{\det(\boldsymbol{A})}{\lambda_{0}}\boldsymbol{\alpha} \end{cases}

      Notes

      1. A\boldsymbol{A} 可逆,A,A1,A\boldsymbol{A}, \boldsymbol{A}^{-1},\boldsymbol{A}^{*} 的特征向量相同
      2. f(A){像多项式一样处理,因式分解AX=λ0Xf(A)X=f(λ)Xf(\boldsymbol{A})\begin{cases} \text{像多项式一样处理,因式分解} \\ \boldsymbol{AX} = \lambda_{0}\boldsymbol{X}\Rightarrow f(\boldsymbol{A})\boldsymbol{X} = f(\lambda)\boldsymbol{X} \end{cases}
      3. λ0\lambda_{0}A\boldsymbol{A}rr 重特征值: (λ0EA)X=0α1,,αs(\lambda_{0}\boldsymbol{E}-\boldsymbol{A})\boldsymbol{X} = \boldsymbol{0}\Rightarrow \boldsymbol{\alpha}_{1},\cdots, \boldsymbol{\alpha}_{s},则 srs\le r
  3. An×n\boldsymbol{A}_{n\times n} 可对角化 \Leftrightarrow A\boldsymbol{A} 存在 nn 个无关特征向量

例题

  1. A,B\boldsymbol{A},\boldsymbol{B}44 阶矩阵,AB\boldsymbol{A}\sim \boldsymbol{B}A\boldsymbol{A} 的特征值为 12,13,14,15\frac{1}{2}, \frac{1}{3}, \frac{1}{4}, \frac{1}{5},求 det(B1E)\det(\boldsymbol{B}^{-1} - \boldsymbol{E}) ABB的特征值: 12,13,14,15B1的特征值: 2,3,4,5det(B1E)=(21)(31)(41)(51)=24 \begin{array}{ll} \because & \boldsymbol{A}\sim \boldsymbol{B} \\ \therefore & \boldsymbol{B}\text{的特征值: } \frac{1}{2}, \frac{1}{3}, \frac{1}{4}, \frac{1}{5} \\ \therefore & \boldsymbol{B}^{-1}\text{的特征值: } 2,3,4,5 \\ \therefore & \det(\boldsymbol{B}^{-1} - \boldsymbol{E}) = (2-1)(3-1)(4-1)(5-1) = 24 \\ \end{array}
  2. A3×3,A2+A2E=0,det(A)=2\boldsymbol{A}_{3\times 3}, \boldsymbol{A}^{2} + \boldsymbol{A} - 2 \boldsymbol{E} = \boldsymbol{0}, \det(\boldsymbol{A}) = -2,求特征值 A2+A2E=0AX=λXX0(A2+A2E)X=(λ2+λ2)X=0λ2+λ2=0λ1=2,λ2=1det(A)=λ1λ2λ3λ3=1 \begin{array}{ll} \because & \boldsymbol{A}^{2} + \boldsymbol{A}- 2 \boldsymbol{E} = \boldsymbol{0} \\ & \text{令} \boldsymbol{AX}= \lambda \boldsymbol{X}\quad \boldsymbol{X} \ne \boldsymbol{0} \\ \therefore & (\boldsymbol{A}^{2} + \boldsymbol{A} - 2 \boldsymbol{E})\boldsymbol{X} = (\lambda^{2} + \lambda -2) \boldsymbol{X} = 0 \\ \therefore & \lambda^{2} + \lambda - 2 = 0 \\ \therefore & \lambda_{1} = -2, \lambda_{2} = 1 \\ \because & \det(\boldsymbol{A}) = \lambda_{1}\lambda_{2}\lambda_{3} \\ \therefore & \lambda_{3} = 1 \\ \end{array}

实对称矩阵 A=A\boldsymbol{A}^{\intercal} = \boldsymbol{A}

  1. AAλ1R,,λnR\boldsymbol{A}^{\intercal}\boldsymbol{A}\Rightarrow \lambda_{1}\in \mathbb{R}, \cdots, \lambda_{n}\in \mathbb{R}
  2. A=A,λ1λ2\boldsymbol{A}^{\intercal} = \boldsymbol{A}, \lambda_{1}\ne \lambda_{2}
    • (λ1EA)X=0α1,,αs(\lambda_{1}\boldsymbol{E} - \boldsymbol{A})\boldsymbol{X} = \boldsymbol{0} \Rightarrow \boldsymbol{\alpha}_{1},\cdots, \boldsymbol{\alpha}_{s}
    • (λ2EA)X=0β1,,βt(\lambda_{2}\boldsymbol{E} - \boldsymbol{A})\boldsymbol{X} = \boldsymbol{0} \Rightarrow \boldsymbol{\beta}_{1},\cdots, \boldsymbol{\beta}_{t}
    • αiβj(i=1,,s,j=1,,t)\boldsymbol{\alpha}_{i}\perp \boldsymbol{\beta}_{j}\quad (i=1,\cdots, s, j = 1,\cdots, t)

      Proof Aαi=λ1αiαiA=λ1αiαiAβj=λ1αiβjλ2αiβj=λ1αiβj(λ2λ1)αiβj=0λ1λ2αiβj=0αiβj\begin{array}{ll} & \boldsymbol{A\alpha}_{i} = \lambda_{1} \boldsymbol{\alpha}_{i} \Rightarrow \boldsymbol{\alpha}_{i}^{\intercal}\boldsymbol{A}^{\intercal} = \lambda_{1} \boldsymbol{\alpha}_{i}^{\intercal} \\ \Rightarrow & \boldsymbol{\alpha}_{i}^{\intercal}\boldsymbol{A\beta}_{j} = \lambda_{1}\boldsymbol{\alpha}_{i}^{\intercal}\boldsymbol{\beta}_{j} \Rightarrow \lambda_{2} \boldsymbol{\alpha}^{\intercal}_{i}\boldsymbol{\beta}_{j} = \lambda_{1}\boldsymbol{\alpha}^{\intercal}_{i}\boldsymbol{\beta}_{j}\\ \Rightarrow & (\lambda_{2} - \lambda_{1}) \boldsymbol{\alpha}_{i}^{\intercal} \boldsymbol{\beta}_{j} = 0 \\ \because & \lambda_{1} \ne \lambda_{2} \\ \therefore & \boldsymbol{\alpha}_{i}^{\intercal} \boldsymbol{\beta}_{j} = 0 \\ \therefore & \boldsymbol{\alpha}_{i}\perp \boldsymbol{\beta}_{j} \\ \end{array}

  3. A=AA\boldsymbol{A}^{\intercal} = \boldsymbol{A} \Rightarrow \boldsymbol{A} 一定可对角化

results matching ""

    No results matching ""