Proof Aα1=λ1α1,⋯ ,Aαs=λ1αsAβ1=λ2β1,⋯ ,Aβs=λ2βs令k1α1+⋯+ksαs+ℓ1β1+⋯+ℓtβt=0(∗)∴A×(∗):λ1(k1α1+⋯+ksαs)+λ2(ℓ1β1+⋯+ℓtβt)=0(∗∗)λ2(∗)−(∗∗):(λ2−λ1)(k1α1+⋯+ksαs)=0∵λ2≠λ1∴k1=⋯=ks=0∴ℓ1=⋯=ℓt=0∴α1,⋯ ,αs,β1,⋯ ,βt线性无关\begin{array}{ll} & \boldsymbol{A\alpha}_{1} = \lambda_{1}\boldsymbol{\alpha}_{1},\cdots,\boldsymbol{A\alpha}_{s} = \lambda_{1}\boldsymbol{\alpha}_{s} \\ & \boldsymbol{A\beta}_{1} = \lambda_{2}\boldsymbol{\beta}_{1},\cdots,\boldsymbol{A\beta}_{s} = \lambda_{2}\boldsymbol{\beta}_{s} \\ & \text{令}k_{1}\boldsymbol{\alpha}_{1} +\cdots +k_{s}\boldsymbol{\alpha}_{s} + \ell_{1}\boldsymbol{\beta}_{1}+\cdots + \ell_{t}\boldsymbol{\beta}_{t} = \boldsymbol{0} \quad(*) \\ \therefore & \boldsymbol{A}\times (*): \\ & \lambda_{1}(k_{1}\boldsymbol{\alpha}_{1} + \cdots + k_{s}\boldsymbol{\alpha}_{s}) + \lambda_{2}(\ell_{1}\boldsymbol{\beta}_{1} + \cdots + \ell_{t}\boldsymbol{\beta}_{t}) = \boldsymbol{0} \quad (**) \\ & \lambda_{2}(*) - (**): \\ & (\lambda_{2}-\lambda_{1})(k_{1}\boldsymbol{\alpha}_{1} + \cdots + k_{s}\boldsymbol{\alpha}_{s}) = \boldsymbol{0} \\ \because & \lambda_{2} \ne \lambda_{1} \\ \therefore & k_{1} = \cdots = k_{s} = 0 \\ \therefore & \ell_{1} = \cdots = \ell_{t} = 0 \\ \therefore & \boldsymbol{\alpha}_{1},\cdots,\boldsymbol{\alpha}_{s},\boldsymbol{\beta}_{1},\cdots,\boldsymbol{\beta}_{t}\text{线性无关} \end{array}∴∵∴∴∴Aα1=λ1α1,⋯,Aαs=λ1αsAβ1=λ2β1,⋯,Aβs=λ2βs令k1α1+⋯+ksαs+ℓ1β1+⋯+ℓtβt=0(∗)A×(∗):λ1(k1α1+⋯+ksαs)+λ2(ℓ1β1+⋯+ℓtβt)=0(∗∗)λ2(∗)−(∗∗):(λ2−λ1)(k1α1+⋯+ksαs)=0λ2=λ1k1=⋯=ks=0ℓ1=⋯=ℓt=0α1,⋯,αs,β1,⋯,βt线性无关
Notes A\boldsymbol{A}A 可逆,A,A−1,A∗\boldsymbol{A}, \boldsymbol{A}^{-1},\boldsymbol{A}^{*}A,A−1,A∗ 的特征向量相同 f(A){像多项式一样处理,因式分解AX=λ0X⇒f(A)X=f(λ)Xf(\boldsymbol{A})\begin{cases} \text{像多项式一样处理,因式分解} \\ \boldsymbol{AX} = \lambda_{0}\boldsymbol{X}\Rightarrow f(\boldsymbol{A})\boldsymbol{X} = f(\lambda)\boldsymbol{X} \end{cases}f(A){像多项式一样处理,因式分解AX=λ0X⇒f(A)X=f(λ)X λ0\lambda_{0}λ0 为 A\boldsymbol{A}A 的 rrr 重特征值: (λ0E−A)X=0⇒α1,⋯ ,αs(\lambda_{0}\boldsymbol{E}-\boldsymbol{A})\boldsymbol{X} = \boldsymbol{0}\Rightarrow \boldsymbol{\alpha}_{1},\cdots, \boldsymbol{\alpha}_{s}(λ0E−A)X=0⇒α1,⋯,αs,则 s≤rs\le rs≤r
Notes
A\boldsymbol{A}A 可逆,A,A−1,A∗\boldsymbol{A}, \boldsymbol{A}^{-1},\boldsymbol{A}^{*}A,A−1,A∗ 的特征向量相同 f(A){像多项式一样处理,因式分解AX=λ0X⇒f(A)X=f(λ)Xf(\boldsymbol{A})\begin{cases} \text{像多项式一样处理,因式分解} \\ \boldsymbol{AX} = \lambda_{0}\boldsymbol{X}\Rightarrow f(\boldsymbol{A})\boldsymbol{X} = f(\lambda)\boldsymbol{X} \end{cases}f(A){像多项式一样处理,因式分解AX=λ0X⇒f(A)X=f(λ)X λ0\lambda_{0}λ0 为 A\boldsymbol{A}A 的 rrr 重特征值: (λ0E−A)X=0⇒α1,⋯ ,αs(\lambda_{0}\boldsymbol{E}-\boldsymbol{A})\boldsymbol{X} = \boldsymbol{0}\Rightarrow \boldsymbol{\alpha}_{1},\cdots, \boldsymbol{\alpha}_{s}(λ0E−A)X=0⇒α1,⋯,αs,则 s≤rs\le rs≤r
Proof Aαi=λ1αi⇒αi⊺A⊺=λ1αi⊺⇒αi⊺Aβj=λ1αi⊺βj⇒λ2αi⊺βj=λ1αi⊺βj⇒(λ2−λ1)αi⊺βj=0∵λ1≠λ2∴αi⊺βj=0∴αi⊥βj\begin{array}{ll} & \boldsymbol{A\alpha}_{i} = \lambda_{1} \boldsymbol{\alpha}_{i} \Rightarrow \boldsymbol{\alpha}_{i}^{\intercal}\boldsymbol{A}^{\intercal} = \lambda_{1} \boldsymbol{\alpha}_{i}^{\intercal} \\ \Rightarrow & \boldsymbol{\alpha}_{i}^{\intercal}\boldsymbol{A\beta}_{j} = \lambda_{1}\boldsymbol{\alpha}_{i}^{\intercal}\boldsymbol{\beta}_{j} \Rightarrow \lambda_{2} \boldsymbol{\alpha}^{\intercal}_{i}\boldsymbol{\beta}_{j} = \lambda_{1}\boldsymbol{\alpha}^{\intercal}_{i}\boldsymbol{\beta}_{j}\\ \Rightarrow & (\lambda_{2} - \lambda_{1}) \boldsymbol{\alpha}_{i}^{\intercal} \boldsymbol{\beta}_{j} = 0 \\ \because & \lambda_{1} \ne \lambda_{2} \\ \therefore & \boldsymbol{\alpha}_{i}^{\intercal} \boldsymbol{\beta}_{j} = 0 \\ \therefore & \boldsymbol{\alpha}_{i}\perp \boldsymbol{\beta}_{j} \\ \end{array}⇒⇒∵∴∴Aαi=λ1αi⇒αi⊺A⊺=λ1αi⊺αi⊺Aβj=λ1αi⊺βj⇒λ2αi⊺βj=λ1αi⊺βj(λ2−λ1)αi⊺βj=0λ1=λ2αi⊺βj=0αi⊥βj