Proof A⊺A=(α1⊺⋮αn⊺)(α1⋯α1)=(α1⊺α1α1⊺α2⋯α1⊺αnα2⊺α1α2⊺α2⋯α2⊺αn⋮⋮⋱⋮αn⊺α1αn⊺α2⋯αn⊺αn)=(1⋱1)⇔{∣αi∣=αi⊺αi=1αi⊺αj≠0(i≠j), 即α1,⋯ ,αn两两正交且规范\begin{array}{ll} & \boldsymbol{A}^{\intercal}\boldsymbol{A} = \left( \begin{matrix} \boldsymbol{\alpha}_{1}^{\intercal} \\ \vdots \\ \boldsymbol{\alpha}_{n}^{\intercal} \\ \end{matrix} \right) \left( \begin{matrix} \boldsymbol{\alpha}_{1} & \cdots \boldsymbol{\alpha}_{1} \end{matrix} \right)\\ & = \left( \begin{matrix} \boldsymbol{\alpha}_{1}^{\intercal} \boldsymbol{\alpha}_{1} & \boldsymbol{\alpha}_{1}^{\intercal} \boldsymbol{\alpha}_{2} & \cdots & \boldsymbol{\alpha}_{1}^{\intercal} \boldsymbol{\alpha}_{n} \\ \boldsymbol{\alpha}_{2}^{\intercal} \boldsymbol{\alpha}_{1} & \boldsymbol{\alpha}_{2}^{\intercal} \boldsymbol{\alpha}_{2} & \cdots & \boldsymbol{\alpha}_{2}^{\intercal} \boldsymbol{\alpha}_{n} \\ \vdots & \vdots & \ddots & \vdots \\ \boldsymbol{\alpha}_{n}^{\intercal} \boldsymbol{\alpha}_{1} & \boldsymbol{\alpha}_{n}^{\intercal} \boldsymbol{\alpha}_{2} & \cdots & \boldsymbol{\alpha}_{n}^{\intercal} \boldsymbol{\alpha}_{n} \\ \end{matrix} \right) = \left( \begin{matrix} 1 \\ & \ddots \\ & & 1 \end{matrix} \right) \\ \Leftrightarrow & \begin{cases} \vert \boldsymbol{\alpha}_{i} \vert = \sqrt{\boldsymbol{\alpha}^{\intercal}_{i}\boldsymbol{\alpha}_{i}} = 1 \\ \boldsymbol{\alpha}_{i}^{\intercal}\boldsymbol{\alpha}_{j}\ne 0 \quad (i\ne j) \end{cases} \text{, 即}\boldsymbol{\alpha}_{1},\cdots, \boldsymbol{\alpha}_{n} \text{两两正交且规范} \end{array}⇔A⊺A=⎝⎛α1⊺⋮αn⊺⎠⎞(α1⋯α1)=⎝⎛α1⊺α1α2⊺α1⋮αn⊺α1α1⊺α2α2⊺α2⋮αn⊺α2⋯⋯⋱⋯α1⊺αnα2⊺αn⋮αn⊺αn⎠⎞=⎝⎛1⋱1⎠⎞{∣αi∣=αi⊺αi=1αi⊺αj=0(i=j), 即α1,⋯,αn两两正交且规范