Section01_定义

概念

  1. 逆序 i,jNi,j\in \mathbb{N},且iji\ne j,则
    1. i<ji<j,称 (i,j)(i,j) 为顺序
    2. i>ji>j,称 (i,j)(i,j) 为逆序
  2. 逆序数i1,i2,,ini_{1},i_{2},\cdots,i_{n}1,2,,n1,2,\cdots,n 的一个排列,i1,i2,,ini_{1},i_{2},\cdots, i_{n} 中含逆序的个数之和,称为逆序数,记为 τ(i1,i2,,in)\tau(i_{1},i_{2},\cdots,i_{n})
    • τ(3,5,6,4,1,2)=2+3+3+2+0=10\tau(3,5,6,4,1,2) = 2 + 3 + 3 + 2 + 0 = 10
  3. 行列式 D=a11a12a1na21a22a2nan1an2annD = \left\vert \begin{matrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \\ \end{matrix} \right\vert 称为 nn 阶行列式
    • a11a12a13a21a22a23a31a32a33=a11a22a33a11a23a32a12a21a33+a12a23a31a13a21a32a13a22a31 \left\vert \begin{matrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \\ \end{matrix} \right\vert = \begin{split} & a_{11}a_{22}a_{33} - a_{11}a_{23}a_{32} \\ & -a_{12}a_{21}a_{33} + a_{12}a_{23}a_{31} \\ & a_{13}a_{21}a_{32} - a_{13}a_{22}a_{31} \end{split}
    • det(A)=σSn(sgn (σ)i=1nai,σi)\displaystyle \det(A) = \sum_{\sigma\in S_{n}}^{}\bigg(\text{sgn }(\sigma) \prod_{i=1}^{n}a_{i,\sigma_{i}}\bigg)
      • SnS_{n}{1,2,,n}\{1,2,\cdots,n\} 的所有排列组成的集合
      • sgn (σ)=(1)τ(σ)\text{sgn }(\sigma) = (-1)^{\tau(\sigma)}
      • σi\sigma_{i} 为排列 σ\sigma 的第 ii 个元素
  4. 余子式与代数余子式 对于行列式 D=a11a12a1na21a22a2nan1an2annD = \left\vert \begin{matrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \\ \end{matrix} \right\vert,取 aija_{ij},并在 DD 中去掉第 iijj 列而成的 n1n-1 阶行列式,记为 MijM_{ij},称 MijM_{ij}aija_{ij} 的余子式,而 Aij(1)i+jMijA_{ij}\triangleq (-1)^{i+j}M_{ij},称 AijA_{ij}aija_{ij} 的代数余子式
    • 余子式和代数余子式依然为一个数或式子

例题

  1. f(x)=2x1122x+22x+34x+12x+1f(x) = \left\vert \begin{matrix} 2x-1 & 1 & -2 \\ 2 & x+2 & 2x+3 \\ -4 & x+1 & 2x+1 \end{matrix} \right\vert,则 x2x^{2} 的系数为         f(x)=2x1122x+22x+34x+12x+1=(2x1)x+22x+3x+12x+1122x+342x+122x+24x+1后两项不包含x2(2x1)x+22x+3x+12x+1=(2x1)(x+2)(2x+1)(2x1)(x+1)(2x+3)x2的系数为0 \begin{array}{ll} & f(x) = \left\vert \begin{matrix} 2x -1 & 1 & -2\\ 2 & x+2 & 2x+3\\ -4 & x+1 & 2x+1 \end{matrix} \right\vert \\ & = (2x-1) \left\vert \begin{matrix} x + 2 & 2x+3 \\ x+1 & 2x+1 \end{matrix} \right\vert - 1 \left\vert \begin{matrix} 2 & 2x+3 \\ -4 & 2x+1 \end{matrix} \right\vert - 2 \left\vert \begin{matrix} 2 & x+2 \\ -4 & x+1 \end{matrix} \right\vert \\ \because & \text{后两项不包含}x^{2} \\ \because & (2x-1) \left\vert \begin{matrix} x+2 & 2x+3 \\ x+1 & 2x+1 \end{matrix} \right\vert \\ & = (2x-1)(x+2)(2x+1) - (2x-1)(x+1)(2x+3) \\ \therefore & x^{2} \text{的系数为}0 \\ \end{array}

results matching ""

    No results matching ""