Section04_解的结构和通解

(), ()(*),\ (**) 解的结构

  1. α1,,αs\boldsymbol{\alpha}_{1},\cdots, \boldsymbol{\alpha}_{s}()(*) 的解 \Rightarrow k1α1++ksαsk_{1}\boldsymbol{\alpha}_{1} + \cdots + k_{s}\boldsymbol{\alpha}_{s}()(*) 的解
  2. α1,,αs\boldsymbol{\alpha}_{1},\cdots, \boldsymbol{\alpha}_{s}()(**) 的解
    1. k1α1++ksαsk_{1}\boldsymbol{\alpha}_{1} + \cdots + k_{s}\boldsymbol{\alpha}_{s}()(*) 的解 \Leftrightarrow k1++ks=0k_{1} + \cdots + k_{s} = 0
    2. k1α1++ksαsk_{1}\boldsymbol{\alpha}_{1} + \cdots + k_{s}\boldsymbol{\alpha}_{s}()(**) 的解 \Leftrightarrow k1++ks=1k_{1} + \cdots + k_{s} = 1
  3. α1,α2\boldsymbol{\alpha}_{1}, \boldsymbol{\alpha}_{2} 分别为 (), ()(*),\ (**) 的解 \Rightarrow α1+α2\boldsymbol{\alpha}_{1} + \boldsymbol{\alpha}_{2}()(**) 的解
  4. α1,α2\boldsymbol{\alpha}_{1}, \boldsymbol{\alpha}_{2}()(**) 的解 \Rightarrow α1α2\boldsymbol{\alpha}_{1} - \boldsymbol{\alpha}_{2}()(*) 的解

通解

AX=0\boldsymbol{AX} = \boldsymbol{0}

  • 定义 Am×n,r(A)=r<n\boldsymbol{A}_{m\times n}, r(\boldsymbol{A}) = r < nAX=0\boldsymbol{AX} = \boldsymbol{0},若 {ζ1,,ζsAX=0的解ζ1,,ζs线性无关s=nr(A)\begin{cases} \zeta_{1},\cdots,\zeta_{s} \text{为} \boldsymbol{AX} = \boldsymbol{0} \text{的解} \\ \zeta_{1},\cdots,\zeta_{s} \text{线性无关} \\ s = n - r(\boldsymbol{A}) \end{cases},则称 ζ1,,ζs\zeta_{1},\cdots, \zeta_{s}AX=0\boldsymbol{AX} = \boldsymbol{0} 的基础解系,通解为 x=k1ζ1++ksζsx = k_{1}\zeta_{1} + \cdots + k_{s}\zeta_{s}
  • A=(111212103414)\boldsymbol{A} = \left( \begin{smallmatrix} 1 & 1 & -1 & 2 \\ 1 & 2 & 1 & 0 \\ 3 & 4 & -1 & 4 \\ \end{smallmatrix} \right) A=(111212103414)(111201220122)(103401220000)通解=k1(3210)+k2(4201) \begin{array}{ll} & \boldsymbol{A} = \left( \begin{smallmatrix} 1 & 1 & -1 & 2 \\ 1 & 2 & 1 & 0 \\ 3 & 4 & -1 & 4 \\ \end{smallmatrix} \right) \rightarrow \left( \begin{smallmatrix} 1 & 1 & -1 & 2 \\ 0 & 1 & 2 & -2 \\ 0 & 1 & 2 & -2 \\ \end{smallmatrix} \right) \rightarrow \left( \begin{smallmatrix} 1 & 0 & -3 & 4 \\ 0 & 1 & 2 & -2 \\ 0 & 0 & 0 & 0 \\ \end{smallmatrix} \right) \\ \therefore & \text{通解} = k_{1} \left( \begin{smallmatrix} 3 \\ -2 \\ 1 \\ 0 \\ \end{smallmatrix} \right) + k_{2} \left( \begin{smallmatrix} -4 \\ 2 \\ 0 \\ 1 \\ \end{smallmatrix} \right)\\ \end{array}
    • NOTICE 通过初等行变化,将矩阵进行化简为阶梯矩阵,要求:
      • 归一性 每行第一个非零元素为1
      • 排他性 每行第一个非零元素为所在列仅有此元素非零

AX=β\boldsymbol{AX} = \boldsymbol{\beta}

  • 通解 AX=0\boldsymbol{AX} = \boldsymbol{0} 的通解 ++ AX=β\boldsymbol{AX} = \boldsymbol{\beta} 的一个特解
  • 过程
    1. Aˉ\bar{\boldsymbol{A}} 通过初等行变化,将矩阵进行化简为阶梯矩阵: Aˉ(1110)\bar{\boldsymbol{A}} \rightarrow \left( \begin{matrix} 1 & \cdots \\ & 1 & \cdots \\ & & && 1 \cdots \\ & & \huge 0 \end{matrix} \right)
    2. 两种结果
      1. Aˉ(111×0)\bar{\boldsymbol{A}}\rightarrow \left( \begin{matrix} 1 & \cdots \\ & 1 & \cdots \\ & & && 1 & \cdots \\ & & && &\times \\ & & \huge 0 \end{matrix} \right),即 r(Aˉ)>r(A)r(\bar{\boldsymbol{A}}) > r(\boldsymbol{A})
      2. Aˉ(1110)\bar{\boldsymbol{A}}\rightarrow \left( \begin{matrix} 1 & \cdots \\ & 1 & \cdots \\ & & && 1 & \cdots \\ & & \huge 0 \end{matrix} \right),即 r(Aˉ)=r(A)r(\bar{\boldsymbol{A}}) = r(\boldsymbol{A})
        1. r(A)=r(Aˉ)=nr(\boldsymbol{A})= r(\bar{\boldsymbol{A}}) = n Aˉ(100?010?001?0)(???)AX=β的解 \begin{array}{c} \bar{\boldsymbol{A}} \rightarrow \left( \begin{smallmatrix} 1 & 0 & \cdots & 0 & ? \\ 0 & 1 & \cdots & 0 & ? \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & \cdots & 1 & ? \\ & & \huge 0 \\ \end{smallmatrix} \right) \\ \left( \begin{smallmatrix} ? \\ ? \\ \vdots \\ ? \end{smallmatrix} \right)\text{为}\boldsymbol{AX} = \boldsymbol{\beta}\text{的解} \end{array}
        2. r(A)=r(Aˉ)<nr(\boldsymbol{A})= r(\bar{\boldsymbol{A}}) < n Aˉ(1c11c21cr0)=(AC00)通解为AX=0的通解+C \begin{array}{c} \bar{\boldsymbol{A}} \rightarrow \left( \begin{smallmatrix} 1 & & \cdots & & & c_{1} \\ & 1 & \cdots & & & c_{2} \\ \cdots \\ & & & 1 & \cdots & c_{r} \\ & & \huge 0 \\ \end{smallmatrix} \right) = \left( \begin{array}{c:c} \boldsymbol{A} & \boldsymbol{C} \\ \boldsymbol{0} & \boldsymbol{0} \end{array} \right)\\ \text{通解为} \boldsymbol{AX} = \boldsymbol{0} \text{的通解} + \boldsymbol{C} \end{array}
  • Aˉ=(11321011420)\bar{\boldsymbol{A}} = \left( \begin{smallmatrix} 1 & -1 & 3 & -2 & 1 \\ 0 & 1 & -1 & 4 & 2 \\ & & \huge0 & & \\ \end{smallmatrix} \right) Aˉ=(11321011420)(10223011420)通解=k1(2110)+k2(2401)+(3200) \begin{array}{ll} & \bar{\boldsymbol{A}} = \left( \begin{matrix} 1 & -1 & 3 & -2 & 1 \\ 0 & 1 & -1 & 4 & 2 \\ & & \huge0 & & \\ \end{matrix} \right) \rightarrow \left( \begin{matrix} 1 & 0 & 2 & 2 & 3 \\ 0 & 1 & -1 & 4 & 2 \\ & & \huge0 & & \\ \end{matrix} \right) \\ \therefore & \text{通解} = k_{1} \left( \begin{matrix} -2\\ 1 \\ 1 \\ 0 \\ \end{matrix} \right) + k_{2}\left( \begin{matrix} -2 \\ -4 \\ 0 \\ 1 \end{matrix} \right) + \left( \begin{matrix} 3 \\ 2 \\ 0 \\ 0 \end{matrix} \right)\\ \end{array}

results matching ""

    No results matching ""