Notes Am×n⇒{r(A)≤mr(A)≤n⇔r(A)≤min{m,n}\boldsymbol{A}_{m\times n} \Rightarrow \begin{cases} r(\boldsymbol{A}) \le m \\ r(\boldsymbol{A}) \le n \\ \end{cases} \Leftrightarrow r(\boldsymbol{A}) \le \min\{m,n\}Am×n⇒{r(A)≤mr(A)≤n⇔r(A)≤min{m,n} α=(a1a2⋮an)⇒r(α)≤1⇔r(α)={0,α=01,α≠0\boldsymbol{\alpha}= \left( \begin{matrix} a_{1} \\ a_{2} \\ \vdots \\ a_{n} \end{matrix} \right)\Rightarrow r(\boldsymbol{\alpha}) \le 1\Leftrightarrow r(\boldsymbol{\alpha}) = \begin{cases} 0, & \boldsymbol{\alpha} = \boldsymbol{0} \\ 1, & \boldsymbol{\alpha} \ne \boldsymbol{0} \end{cases}α=⎝⎛a1a2⋮an⎠⎞⇒r(α)≤1⇔r(α)={0,1,α=0α=0 对于An×n\boldsymbol{A}_{n\times n}An×n A可逆⇔∣A∣≠0⇔r(A)=n (A满秩)\boldsymbol{A}\text{可逆}\Leftrightarrow \vert \boldsymbol{A} \vert \ne 0 \Leftrightarrow r(\boldsymbol{A}) = n\ (\boldsymbol{A} \text{满秩})A可逆⇔∣A∣=0⇔r(A)=n (A满秩) A不可逆⇔∣A∣=0⇔r(A)<n (A降秩)\boldsymbol{A}\text{不可逆}\Leftrightarrow \vert \boldsymbol{A} \vert = 0 \Leftrightarrow r(\boldsymbol{A}) < n\ (\boldsymbol{A} \text{降秩})A不可逆⇔∣A∣=0⇔r(A)<n (A降秩)
Notes
Am×n⇒{r(A)≤mr(A)≤n⇔r(A)≤min{m,n}\boldsymbol{A}_{m\times n} \Rightarrow \begin{cases} r(\boldsymbol{A}) \le m \\ r(\boldsymbol{A}) \le n \\ \end{cases} \Leftrightarrow r(\boldsymbol{A}) \le \min\{m,n\}Am×n⇒{r(A)≤mr(A)≤n⇔r(A)≤min{m,n} α=(a1a2⋮an)⇒r(α)≤1⇔r(α)={0,α=01,α≠0\boldsymbol{\alpha}= \left( \begin{matrix} a_{1} \\ a_{2} \\ \vdots \\ a_{n} \end{matrix} \right)\Rightarrow r(\boldsymbol{\alpha}) \le 1\Leftrightarrow r(\boldsymbol{\alpha}) = \begin{cases} 0, & \boldsymbol{\alpha} = \boldsymbol{0} \\ 1, & \boldsymbol{\alpha} \ne \boldsymbol{0} \end{cases}α=⎝⎛a1a2⋮an⎠⎞⇒r(α)≤1⇔r(α)={0,1,α=0α=0 对于An×n\boldsymbol{A}_{n\times n}An×n A可逆⇔∣A∣≠0⇔r(A)=n (A满秩)\boldsymbol{A}\text{可逆}\Leftrightarrow \vert \boldsymbol{A} \vert \ne 0 \Leftrightarrow r(\boldsymbol{A}) = n\ (\boldsymbol{A} \text{满秩})A可逆⇔∣A∣=0⇔r(A)=n (A满秩) A不可逆⇔∣A∣=0⇔r(A)<n (A降秩)\boldsymbol{A}\text{不可逆}\Leftrightarrow \vert \boldsymbol{A} \vert = 0 \Leftrightarrow r(\boldsymbol{A}) < n\ (\boldsymbol{A} \text{降秩})A不可逆⇔∣A∣=0⇔r(A)<n (A降秩)
A→row(×⋯×⋯×⋯) \boldsymbol{A} \xrightarrow{\text{row}} \left( \begin{matrix} \times & \cdots \\ & \times & \cdots \\ & && \times & \cdots \\\\ \end{matrix} \right) Arow⎝⎛×⋯×⋯×⋯⎠⎞
Notes r(A)=0⇔A=0r(\boldsymbol{A}) = 0 \Leftrightarrow \boldsymbol{A} = 0r(A)=0⇔A=0 A≠0⇔r(A)≥1\boldsymbol{A} \ne \boldsymbol{0} \Leftrightarrow r(\boldsymbol{A}) \ge 1A=0⇔r(A)≥1 r(A)≥2⇔A至少两行不成比例r(\boldsymbol{A}) \ge 2 \Leftrightarrow \boldsymbol{A}\text{至少两行不成比例}r(A)≥2⇔A至少两行不成比例
r(A)=0⇔A=0r(\boldsymbol{A}) = 0 \Leftrightarrow \boldsymbol{A} = 0r(A)=0⇔A=0 A≠0⇔r(A)≥1\boldsymbol{A} \ne \boldsymbol{0} \Leftrightarrow r(\boldsymbol{A}) \ge 1A=0⇔r(A)≥1 r(A)≥2⇔A至少两行不成比例r(\boldsymbol{A}) \ge 2 \Leftrightarrow \boldsymbol{A}\text{至少两行不成比例}r(A)≥2⇔A至少两行不成比例
Note 见 A⊺A, AA⊺\boldsymbol{A}^{\intercal}\boldsymbol{A},\ \boldsymbol{AA}^{\intercal}A⊺A, AA⊺ 时使用
Note 见 {r(A+B)r(A−B)r(A)+r(B)\begin{cases} r(\boldsymbol{A}+\boldsymbol{B}) \\ r(\boldsymbol{A} - \boldsymbol{B}) \\ r(\boldsymbol{A}) + r(\boldsymbol{B}) \end{cases}⎩⎨⎧r(A+B)r(A−B)r(A)+r(B) 时使用
Note 见 AB=0\boldsymbol{AB} = \boldsymbol{0}AB=0 时,使用
Proof 令B=PAr(B)=r(PA)≤r(A)∵P可逆,A=P−1B∴r(A)=r(P−1B)≤r(B)=r(PA)∴r(A)=r(PA) \begin{array}{ll} & \text{令}\boldsymbol{B} = \boldsymbol{PA} \\ & r(\boldsymbol{B}) = r(\boldsymbol{PA}) \le r(\boldsymbol{A}) \\ \because & \boldsymbol{P} \text{可逆}, \boldsymbol{A} = \boldsymbol{P}^{-1}\boldsymbol{B} \\ \therefore & r(\boldsymbol{A}) = r(\boldsymbol{P}^{-1}\boldsymbol{B}) \le r(\boldsymbol{B}) = r(\boldsymbol{PA}) \\ \therefore & r(\boldsymbol{A}) = r(\boldsymbol{PA}) \\ \end{array} ∵∴∴令B=PAr(B)=r(PA)≤r(A)P可逆,A=P−1Br(A)=r(P−1B)≤r(B)=r(PA)r(A)=r(PA)
Proof
令B=PAr(B)=r(PA)≤r(A)∵P可逆,A=P−1B∴r(A)=r(P−1B)≤r(B)=r(PA)∴r(A)=r(PA) \begin{array}{ll} & \text{令}\boldsymbol{B} = \boldsymbol{PA} \\ & r(\boldsymbol{B}) = r(\boldsymbol{PA}) \le r(\boldsymbol{A}) \\ \because & \boldsymbol{P} \text{可逆}, \boldsymbol{A} = \boldsymbol{P}^{-1}\boldsymbol{B} \\ \therefore & r(\boldsymbol{A}) = r(\boldsymbol{P}^{-1}\boldsymbol{B}) \le r(\boldsymbol{B}) = r(\boldsymbol{PA}) \\ \therefore & r(\boldsymbol{A}) = r(\boldsymbol{PA}) \\ \end{array} ∵∴∴令B=PAr(B)=r(PA)≤r(A)P可逆,A=P−1Br(A)=r(P−1B)≤r(B)=r(PA)r(A)=r(PA)
Proof r(A)=nr(\boldsymbol{A}) = nr(A)=n ∵AA∗=∣A∣E∴∣A∣∣A∗∣=∣A∣n∵∣A∣≠0∴∣A∗∣=∣A∣n−1≠0∴r(A∗)=n \begin{array}{ll} \because & \boldsymbol{AA}^{*} = \vert \boldsymbol{A} \vert \boldsymbol{E} \\ \therefore & \vert\boldsymbol{A}\vert \vert \boldsymbol{A}^{*} \vert = \vert \boldsymbol{A} \vert^{n} \\ \because & \vert \boldsymbol{A} \vert \ne 0 \\ \therefore & \vert \boldsymbol{A}^{*} \vert = \vert \boldsymbol{A} \vert^{n-1} \ne 0 \\ \therefore & r(\boldsymbol{A}^{*}) = n \\ \end{array} ∵∴∵∴∴AA∗=∣A∣E∣A∣∣A∗∣=∣A∣n∣A∣=0∣A∗∣=∣A∣n−1=0r(A∗)=n r(A)=n−1r(\boldsymbol{A}) = n-1r(A)=n−1 ∵AA∗=∣A∣E=0∴r(A)+r(A∗)≤n∵r(A)=n−1∴r(A∗)≤1∵r(A)=n−1∴∃ Aij≠0,∴A∗≠0r(A∗)≥1∴r(A∗)=1 \begin{array}{ll} \because & \boldsymbol{AA}^{*} = \vert \boldsymbol{A} \vert \boldsymbol{E} = \boldsymbol{0} \\ \therefore & r(\boldsymbol{A}) + r(\boldsymbol{A}^{*}) \le n \\ \because & r(\boldsymbol{A}) = n-1 \\ \therefore & r(\boldsymbol{A}^{*}) \le 1 \\ \because & r(\boldsymbol{A}) = n-1 \\ \therefore & \exists\ A_{ij} \ne 0, \\ \therefore & \boldsymbol{A}^{*} \ne \boldsymbol{0} \\ & r(\boldsymbol{A}^{*}) \ge 1 \\ \therefore & r(\boldsymbol{A}^{*}) = 1 \\ \end{array} ∵∴∵∴∵∴∴∴AA∗=∣A∣E=0r(A)+r(A∗)≤nr(A)=n−1r(A∗)≤1r(A)=n−1∃ Aij=0,A∗=0r(A∗)≥1r(A∗)=1 r(A)<n−1r(\boldsymbol{A}) < n-1r(A)<n−1 ∵r(A)<n−1∴∀ Aij=0∴A∗=0∴r(A∗)=0 \begin{array}{ll} \because & r(\boldsymbol{A}) < n-1 \\ \therefore & \forall\ A_{ij} = 0 \\ \therefore & \boldsymbol{A}^{*} = \boldsymbol{0} \\ \therefore & r(\boldsymbol{A}^{*}) = 0 \\ \end{array} ∵∴∴∴r(A)<n−1∀ Aij=0A∗=0r(A∗)=0
r(A)=nr(\boldsymbol{A}) = nr(A)=n ∵AA∗=∣A∣E∴∣A∣∣A∗∣=∣A∣n∵∣A∣≠0∴∣A∗∣=∣A∣n−1≠0∴r(A∗)=n \begin{array}{ll} \because & \boldsymbol{AA}^{*} = \vert \boldsymbol{A} \vert \boldsymbol{E} \\ \therefore & \vert\boldsymbol{A}\vert \vert \boldsymbol{A}^{*} \vert = \vert \boldsymbol{A} \vert^{n} \\ \because & \vert \boldsymbol{A} \vert \ne 0 \\ \therefore & \vert \boldsymbol{A}^{*} \vert = \vert \boldsymbol{A} \vert^{n-1} \ne 0 \\ \therefore & r(\boldsymbol{A}^{*}) = n \\ \end{array} ∵∴∵∴∴AA∗=∣A∣E∣A∣∣A∗∣=∣A∣n∣A∣=0∣A∗∣=∣A∣n−1=0r(A∗)=n r(A)=n−1r(\boldsymbol{A}) = n-1r(A)=n−1 ∵AA∗=∣A∣E=0∴r(A)+r(A∗)≤n∵r(A)=n−1∴r(A∗)≤1∵r(A)=n−1∴∃ Aij≠0,∴A∗≠0r(A∗)≥1∴r(A∗)=1 \begin{array}{ll} \because & \boldsymbol{AA}^{*} = \vert \boldsymbol{A} \vert \boldsymbol{E} = \boldsymbol{0} \\ \therefore & r(\boldsymbol{A}) + r(\boldsymbol{A}^{*}) \le n \\ \because & r(\boldsymbol{A}) = n-1 \\ \therefore & r(\boldsymbol{A}^{*}) \le 1 \\ \because & r(\boldsymbol{A}) = n-1 \\ \therefore & \exists\ A_{ij} \ne 0, \\ \therefore & \boldsymbol{A}^{*} \ne \boldsymbol{0} \\ & r(\boldsymbol{A}^{*}) \ge 1 \\ \therefore & r(\boldsymbol{A}^{*}) = 1 \\ \end{array} ∵∴∵∴∵∴∴∴AA∗=∣A∣E=0r(A)+r(A∗)≤nr(A)=n−1r(A∗)≤1r(A)=n−1∃ Aij=0,A∗=0r(A∗)≥1r(A∗)=1 r(A)<n−1r(\boldsymbol{A}) < n-1r(A)<n−1 ∵r(A)<n−1∴∀ Aij=0∴A∗=0∴r(A∗)=0 \begin{array}{ll} \because & r(\boldsymbol{A}) < n-1 \\ \therefore & \forall\ A_{ij} = 0 \\ \therefore & \boldsymbol{A}^{*} = \boldsymbol{0} \\ \therefore & r(\boldsymbol{A}^{*}) = 0 \\ \end{array} ∵∴∴∴r(A)<n−1∀ Aij=0A∗=0r(A∗)=0
r(A)=nr(\boldsymbol{A}) = nr(A)=n
∵AA∗=∣A∣E∴∣A∣∣A∗∣=∣A∣n∵∣A∣≠0∴∣A∗∣=∣A∣n−1≠0∴r(A∗)=n \begin{array}{ll} \because & \boldsymbol{AA}^{*} = \vert \boldsymbol{A} \vert \boldsymbol{E} \\ \therefore & \vert\boldsymbol{A}\vert \vert \boldsymbol{A}^{*} \vert = \vert \boldsymbol{A} \vert^{n} \\ \because & \vert \boldsymbol{A} \vert \ne 0 \\ \therefore & \vert \boldsymbol{A}^{*} \vert = \vert \boldsymbol{A} \vert^{n-1} \ne 0 \\ \therefore & r(\boldsymbol{A}^{*}) = n \\ \end{array} ∵∴∵∴∴AA∗=∣A∣E∣A∣∣A∗∣=∣A∣n∣A∣=0∣A∗∣=∣A∣n−1=0r(A∗)=n
r(A)=n−1r(\boldsymbol{A}) = n-1r(A)=n−1
∵AA∗=∣A∣E=0∴r(A)+r(A∗)≤n∵r(A)=n−1∴r(A∗)≤1∵r(A)=n−1∴∃ Aij≠0,∴A∗≠0r(A∗)≥1∴r(A∗)=1 \begin{array}{ll} \because & \boldsymbol{AA}^{*} = \vert \boldsymbol{A} \vert \boldsymbol{E} = \boldsymbol{0} \\ \therefore & r(\boldsymbol{A}) + r(\boldsymbol{A}^{*}) \le n \\ \because & r(\boldsymbol{A}) = n-1 \\ \therefore & r(\boldsymbol{A}^{*}) \le 1 \\ \because & r(\boldsymbol{A}) = n-1 \\ \therefore & \exists\ A_{ij} \ne 0, \\ \therefore & \boldsymbol{A}^{*} \ne \boldsymbol{0} \\ & r(\boldsymbol{A}^{*}) \ge 1 \\ \therefore & r(\boldsymbol{A}^{*}) = 1 \\ \end{array} ∵∴∵∴∵∴∴∴AA∗=∣A∣E=0r(A)+r(A∗)≤nr(A)=n−1r(A∗)≤1r(A)=n−1∃ Aij=0,A∗=0r(A∗)≥1r(A∗)=1
r(A)<n−1r(\boldsymbol{A}) < n-1r(A)<n−1
∵r(A)<n−1∴∀ Aij=0∴A∗=0∴r(A∗)=0 \begin{array}{ll} \because & r(\boldsymbol{A}) < n-1 \\ \therefore & \forall\ A_{ij} = 0 \\ \therefore & \boldsymbol{A}^{*} = \boldsymbol{0} \\ \therefore & r(\boldsymbol{A}^{*}) = 0 \\ \end{array} ∵∴∴∴r(A)<n−1∀ Aij=0A∗=0r(A∗)=0
==Notes== Am×n,Bn×s=(β1β2⋯βs)\boldsymbol{A}_{m\times n}, \boldsymbol{B}_{n\times s} = \left(\begin{matrix}\boldsymbol{\beta}_{1} & \boldsymbol{\beta}_{2}&\cdots & \boldsymbol{\beta}_{s}\end{matrix}\right)Am×n,Bn×s=(β1β2⋯βs),则 AB=A(β1β2⋯βs)=(Aβ1Aβ2⋯Aβs)\color{#D0104C}\boldsymbol{AB} = \boldsymbol{A}\left(\begin{matrix}\boldsymbol{\beta}_{1} & \boldsymbol{\beta}_{2}&\cdots & \boldsymbol{\beta}_{s}\end{matrix}\right) = \left(\begin{matrix}\boldsymbol{A\beta}_{1} & \boldsymbol{A\beta}_{2}&\cdots & \boldsymbol{A\beta}_{s}\end{matrix}\right)AB=A(β1β2⋯βs)=(Aβ1Aβ2⋯Aβs) A(BC)=(ABAC)\color{#D0104C} \boldsymbol{A} \left( \begin{array}{c:c} \boldsymbol{B} & \boldsymbol{C} \end{array}\right) = \left( \begin{array}{c:c} \boldsymbol{AB} & \boldsymbol{AC} \end{array}\right)A(BC)=(ABAC) A=(α1α2α3)\boldsymbol{A} = \left(\begin{matrix}\boldsymbol{\alpha}_{1} & \boldsymbol{\alpha}_{2}& \boldsymbol{\alpha}_{3}\end{matrix}\right)A=(α1α2α3),则 B=(α1+α22α1−α3α2+2α3)=A(1201010−12)\color{#D0104C}\boldsymbol{B} = \left(\begin{matrix}\boldsymbol{\alpha}_{1}+\boldsymbol{\alpha}_{2} & 2\boldsymbol{\alpha}_{1}- \boldsymbol{\alpha}_{3}& \boldsymbol{\alpha}_{2} + 2 \boldsymbol{\alpha}_{3}\end{matrix}\right) = \boldsymbol{A} \left( \begin{matrix} 1 & 2 & 0 \\ 1 & 0 & 1 \\ 0 & -1 & 2 \end{matrix} \right)B=(α1+α22α1−α3α2+2α3)=A⎝⎛11020−1012⎠⎞
==Notes==
Am×n,Bn×s=(β1β2⋯βs)\boldsymbol{A}_{m\times n}, \boldsymbol{B}_{n\times s} = \left(\begin{matrix}\boldsymbol{\beta}_{1} & \boldsymbol{\beta}_{2}&\cdots & \boldsymbol{\beta}_{s}\end{matrix}\right)Am×n,Bn×s=(β1β2⋯βs),则 AB=A(β1β2⋯βs)=(Aβ1Aβ2⋯Aβs)\color{#D0104C}\boldsymbol{AB} = \boldsymbol{A}\left(\begin{matrix}\boldsymbol{\beta}_{1} & \boldsymbol{\beta}_{2}&\cdots & \boldsymbol{\beta}_{s}\end{matrix}\right) = \left(\begin{matrix}\boldsymbol{A\beta}_{1} & \boldsymbol{A\beta}_{2}&\cdots & \boldsymbol{A\beta}_{s}\end{matrix}\right)AB=A(β1β2⋯βs)=(Aβ1Aβ2⋯Aβs) A(BC)=(ABAC)\color{#D0104C} \boldsymbol{A} \left( \begin{array}{c:c} \boldsymbol{B} & \boldsymbol{C} \end{array}\right) = \left( \begin{array}{c:c} \boldsymbol{AB} & \boldsymbol{AC} \end{array}\right)A(BC)=(ABAC) A=(α1α2α3)\boldsymbol{A} = \left(\begin{matrix}\boldsymbol{\alpha}_{1} & \boldsymbol{\alpha}_{2}& \boldsymbol{\alpha}_{3}\end{matrix}\right)A=(α1α2α3),则 B=(α1+α22α1−α3α2+2α3)=A(1201010−12)\color{#D0104C}\boldsymbol{B} = \left(\begin{matrix}\boldsymbol{\alpha}_{1}+\boldsymbol{\alpha}_{2} & 2\boldsymbol{\alpha}_{1}- \boldsymbol{\alpha}_{3}& \boldsymbol{\alpha}_{2} + 2 \boldsymbol{\alpha}_{3}\end{matrix}\right) = \boldsymbol{A} \left( \begin{matrix} 1 & 2 & 0 \\ 1 & 0 & 1 \\ 0 & -1 & 2 \end{matrix} \right)B=(α1+α22α1−α3α2+2α3)=A⎝⎛11020−1012⎠⎞