Section01_概念

背景 二次型

  • 例子
    1. 标准二次型 f(x1,x2,x3)=2x12+3x22x32f(x_{1},x_{2},x_{3}) = 2x^{2}_{1} + 3x_{2}^{2} - x^{2}_{3}
      • A=(200030001),X=(x1x2x3)\boldsymbol{A} = \left( \begin{smallmatrix} 2 & 0 & 0 \\ 0 & 3 & 0 \\ 0 & 0 & -1 \\ \end{smallmatrix} \right), \boldsymbol{X} = \left( \begin{smallmatrix} x_{1} \\ x_{2} \\ x_{3} \\ \end{smallmatrix} \right),则 f=XAXf = \boldsymbol{X}^{\intercal}\boldsymbol{AX},此时,A\boldsymbol{A}对角矩阵
    2. 非标准二次型 f(x1,x2)=x124x1x2x22f(x_{1},x_{2}) = x_{1}^{2} -4x_{1}x_{2}-x^{2}_{2}
      • A=(1221),X=(x1x2x3)\boldsymbol{A} = \left( \begin{smallmatrix} 1 & -2 \\ -2 & -1 \end{smallmatrix} \right), \boldsymbol{X} = \left( \begin{smallmatrix} x_{1} \\ x_{2} \\ x_{3} \\ \end{smallmatrix} \right),则 f=XAXf = \boldsymbol{X}^{\intercal}\boldsymbol{AX},此时,A\boldsymbol{A}对称而非对角矩阵
  • 判别

    f=XAX{标准二次型A为对角矩阵非标准二次型A为对称而不对角矩阵f= \boldsymbol{X}^{\intercal}\boldsymbol{AX} \begin{cases} \text{标准二次型} \Leftrightarrow \boldsymbol{A}\text{为对角矩阵} \\ \text{非标准二次型} \Leftrightarrow \boldsymbol{A}\text{为对称而不对角矩阵} \\ \end{cases}

  • 矩阵对角化

    将对称而不对角的 A\boldsymbol{A} 转化为对角 A\boldsymbol{A} 的过程

  1. 特征值与特征向量 A\boldsymbol{A}nn 阶方阵,若  λC,αCn×1\exists\ \lambda\in\mathbb{C}, \boldsymbol{\alpha}\in \mathbb{C}_{n\times 1},使得 Aα=λα\boldsymbol{A\alpha} = \lambda \boldsymbol{\alpha}
    • λ\lambdaA\boldsymbol{A} 特征值
    • α\boldsymbol{\alpha}λ\lambda 对应的特征向量
  2. 特征方程 det(λEA)=0\det(\lambda \boldsymbol{E} - \boldsymbol{A}) = 0 称为 A\boldsymbol{A} 的特征方程 det(λEA)=0λa11a12a1na21λa22a2nan1an2λann=0λn(a11+a22++ann)λn1+=0 \begin{array}{c} \det(\lambda \boldsymbol{E} - \boldsymbol{A}) = 0 \\ \Updownarrow \\ \left\vert \begin{matrix} \lambda - a_{11} & - a_{12} & \cdots & -a_{1n} \\ - a_{21} & \lambda - a_{22} & \cdots & -a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ - a_{n1} & - a_{n2} & \cdots & \lambda - a_{nn} \\ \end{matrix} \right\vert = 0 \\ \Updownarrow \\ \lambda^{n} - (a_{11} + a_{22} + \cdots + a_{nn})\lambda^{n-1} + \cdots = 0 \end{array}

    Notes

    1. λ\lambda 不一定为实数
    2. 矩阵的迹 a11+a22++anntr(A)a_{11} + a_{22} + \cdots + a_{nn} \triangleq \text{tr}(\boldsymbol{A})
    3. det(λEA)=0λ1,,λn\det(\lambda \boldsymbol{E} - \boldsymbol{A}) = 0 \Rightarrow \lambda_{1},\cdots, \lambda_{n}
      • i=1nλi=tr(A)\sum\limits_{i=1}^{n} \lambda_{i} = \text{tr}(\boldsymbol{A})
      • i=1nλi=det(A)\prod\limits_{i=1}^{n} \lambda_{i} = \det(\boldsymbol{A})
    4. det(A)=i=1nλi\det(\boldsymbol{A}) = \prod\limits_{i=1}^{n}\lambda_{i}
      • Case 1 A\boldsymbol{A} 可逆 \Leftrightarrow det(A)0\det(\boldsymbol{A})\ne 0 \Leftrightarrow λi0(1i)\lambda_{i}\ne 0\quad (1\le i \le) \Leftrightarrow A\boldsymbol{A} 满秩
      • Case 2 A\boldsymbol{A} 不可逆 \Leftrightarrow det(A)=0\det(\boldsymbol{A})= 0 \Leftrightarrow  λi=0(1i)\exists\ \lambda_{i} = 0\quad (1\le i \le) \Leftrightarrow A\boldsymbol{A} 降秩
    5. λ0\lambda_{0} 为特征值,其对应的特征向量,即 (λ0EA)X=0(\lambda_{0}\boldsymbol{E} - \boldsymbol{A})\boldsymbol{X} = \boldsymbol{0} 的非零解
  3. 相似矩阵 A,B\boldsymbol{A}, \boldsymbol{B}nn 阶方阵,若存在可逆阵 P\boldsymbol{P},使得 P1AP=B\boldsymbol{P}^{-1}\boldsymbol{A}\boldsymbol{P} = \boldsymbol{B},称 A,B\boldsymbol{A},\boldsymbol{B} 相似,记为 AB\boldsymbol{A}\sim \boldsymbol{B}
    1. {AA,(E1AE=A)ABBAAB,BCAC\begin{cases} \boldsymbol{A}\sim \boldsymbol{A},\quad (\boldsymbol{E}^{-1}\boldsymbol{A}\boldsymbol{E} = \boldsymbol{A}) \\ \boldsymbol{A} \sim \boldsymbol{B} \Rightarrow \boldsymbol{B} \sim \boldsymbol{A} \\ \boldsymbol{A} \sim \boldsymbol{B}, \boldsymbol{B} \sim \boldsymbol{C} \Rightarrow \boldsymbol{A}\sim \boldsymbol{C} \end{cases}
    2. ABr(A)=r(B)\boldsymbol{A}\sim \boldsymbol{B} \nLeftarrow\Rightarrow r(\boldsymbol{A}) = r(\boldsymbol{B})
    3. ABdet(λEA)=det(λEB)A,B特征值相同\boldsymbol{A}\sim \boldsymbol{B} \nLeftarrow\Rightarrow \det(\lambda \boldsymbol{E} - \boldsymbol{A}) = \det(\lambda \boldsymbol{E} - \boldsymbol{B}) \Rightarrow \boldsymbol{A},\boldsymbol{B}\text{特征值相同}

      Proof

      \Rightarrow ABB=P1APdet(λEB)=det(λEP1AP)=det(λP1PP1AP)=det(P1(λEA)P)=det(P1)det(λEA)det(P)det(P1)det(P)=1det(λEB)=det(λEA)=0 \begin{array}{ll} & \boldsymbol{A} \sim \boldsymbol{B} \Rightarrow \boldsymbol{B} = \boldsymbol{P}^{-1}\boldsymbol{AP} \\ & \det(\lambda \boldsymbol{E} - \boldsymbol{B}) = \det(\lambda \boldsymbol{E} - \boldsymbol{P}^{-1}\boldsymbol{AP}) \\ & = \det(\lambda \boldsymbol{P}^{-1}\boldsymbol{P} - \boldsymbol{P}^{-1}\boldsymbol{AP}) \\ & = \det(\boldsymbol{P}^{-1}(\lambda \boldsymbol{E} - \boldsymbol{A}) \boldsymbol{P}) \\ & = \det(\boldsymbol{P}^{-1})\det(\lambda\boldsymbol{E} - \boldsymbol{A})\det(\boldsymbol{P}) \\ \because & \det(\boldsymbol{P}^{-1})\det(\boldsymbol{P}) = 1 \\ \therefore & \det(\lambda \boldsymbol{E} - \boldsymbol{B}) = \det(\lambda \boldsymbol{E} - \boldsymbol{A}) = 0 \\ \end{array} \nLeftarrow 反例 A=(200000000),B=(012001002)\boldsymbol{A} = \left( \begin{matrix} 2 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ \end{matrix} \right), \boldsymbol{B} = \left( \begin{matrix} 0 & 1 & 2 \\ 0 & 0 & 1 \\ 0 & 0 & 2 \\ \end{matrix} \right)

    4. AB{tr(A)=tr(B)det(A)=det(B)\boldsymbol{A} \sim \boldsymbol{B}\Rightarrow \begin{cases} \text{tr}(\boldsymbol{A}) = \text{tr}(\boldsymbol{B}) \\ \det(\boldsymbol{A}) = \det(\boldsymbol{B}) \end{cases}
    5. AB{ABf(A)f(B)\boldsymbol{A} \sim \boldsymbol{B}\Rightarrow \begin{cases} \boldsymbol{A}^{\intercal}\sim \boldsymbol{B}^{\intercal} \\ f(\boldsymbol{A}) \sim f(\boldsymbol{B}) \end{cases}
    6. AB\boldsymbol{A} \sim \boldsymbol{B},且 A,B\boldsymbol{A},\boldsymbol{B} 可逆 {A1B1AB\Rightarrow \begin{cases} \boldsymbol{A}^{-1}\sim \boldsymbol{B}^{-1} \\ \boldsymbol{A}^{*}\sim \boldsymbol{B}^{*} \end{cases}

      Notes

      P1AP=B[(P1)]1A(P1)=BABP1AP=BP1A1P=B1A1B1P1A1P=BP1det(A)A1P=det(B)B1P1AP=BAB\begin{array}{ll} \boldsymbol{P}^{-1}\boldsymbol{AP} = \boldsymbol{B} \Rightarrow [(\boldsymbol{P^{-1}})^{\intercal}]^{-1}\boldsymbol{A}^{\intercal}(\boldsymbol{P^{-1}})^{\intercal} = \boldsymbol{B}^{\intercal} \\ \Rightarrow \boldsymbol{A}^{\intercal}\sim \boldsymbol{B}^{\intercal} \\\\ \boldsymbol{P}^{-1}\boldsymbol{AP} = \boldsymbol{B} \Rightarrow \boldsymbol{P}^{-1}\boldsymbol{A}^{-1}\boldsymbol{P} = \boldsymbol{B}^{-1} \\ \Rightarrow \boldsymbol{A}^{-1}\sim \boldsymbol{B}^{-1} \\\\ \boldsymbol{P}^{-1}\boldsymbol{A}^{-1}\boldsymbol{P} = \boldsymbol{B} \Rightarrow \boldsymbol{P}^{-1}\det(\boldsymbol{A})\boldsymbol{A}^{-1}\boldsymbol{P} = \det(\boldsymbol{B})\boldsymbol{B}^{-1} \\ \Rightarrow \boldsymbol{P}^{-1}\boldsymbol{A}^{*}\boldsymbol{P} = \boldsymbol{B}^{*}\Rightarrow \boldsymbol{A}^{*}\sim \boldsymbol{B}^{*} \\\\ \end{array}

results matching ""

    No results matching ""