背景 二次型 例子 标准二次型 f(x1,x2,x3)=2x12+3x22−x32f(x_{1},x_{2},x_{3}) = 2x^{2}_{1} + 3x_{2}^{2} - x^{2}_{3}f(x1,x2,x3)=2x12+3x22−x32 令 A=(20003000−1),X=(x1x2x3)\boldsymbol{A} = \left( \begin{smallmatrix} 2 & 0 & 0 \\ 0 & 3 & 0 \\ 0 & 0 & -1 \\ \end{smallmatrix} \right), \boldsymbol{X} = \left( \begin{smallmatrix} x_{1} \\ x_{2} \\ x_{3} \\ \end{smallmatrix} \right)A=(20003000−1),X=(x1x2x3),则 f=X⊺AXf = \boldsymbol{X}^{\intercal}\boldsymbol{AX}f=X⊺AX,此时,A\boldsymbol{A}A 为对角矩阵 非标准二次型 f(x1,x2)=x12−4x1x2−x22f(x_{1},x_{2}) = x_{1}^{2} -4x_{1}x_{2}-x^{2}_{2}f(x1,x2)=x12−4x1x2−x22 令 A=(1−2−2−1),X=(x1x2x3)\boldsymbol{A} = \left( \begin{smallmatrix} 1 & -2 \\ -2 & -1 \end{smallmatrix} \right), \boldsymbol{X} = \left( \begin{smallmatrix} x_{1} \\ x_{2} \\ x_{3} \\ \end{smallmatrix} \right)A=(1−2−2−1),X=(x1x2x3),则 f=X⊺AXf = \boldsymbol{X}^{\intercal}\boldsymbol{AX}f=X⊺AX,此时,A\boldsymbol{A}A 为对称而非对角矩阵 判别 f=X⊺AX{标准二次型⇔A为对角矩阵非标准二次型⇔A为对称而不对角矩阵f= \boldsymbol{X}^{\intercal}\boldsymbol{AX} \begin{cases} \text{标准二次型} \Leftrightarrow \boldsymbol{A}\text{为对角矩阵} \\ \text{非标准二次型} \Leftrightarrow \boldsymbol{A}\text{为对称而不对角矩阵} \\ \end{cases}f=X⊺AX{标准二次型⇔A为对角矩阵非标准二次型⇔A为对称而不对角矩阵 矩阵对角化 将对称而不对角的 A\boldsymbol{A}A 转化为对角 A\boldsymbol{A}A 的过程
背景 二次型
标准二次型 f(x1,x2,x3)=2x12+3x22−x32f(x_{1},x_{2},x_{3}) = 2x^{2}_{1} + 3x_{2}^{2} - x^{2}_{3}f(x1,x2,x3)=2x12+3x22−x32 令 A=(20003000−1),X=(x1x2x3)\boldsymbol{A} = \left( \begin{smallmatrix} 2 & 0 & 0 \\ 0 & 3 & 0 \\ 0 & 0 & -1 \\ \end{smallmatrix} \right), \boldsymbol{X} = \left( \begin{smallmatrix} x_{1} \\ x_{2} \\ x_{3} \\ \end{smallmatrix} \right)A=(20003000−1),X=(x1x2x3),则 f=X⊺AXf = \boldsymbol{X}^{\intercal}\boldsymbol{AX}f=X⊺AX,此时,A\boldsymbol{A}A 为对角矩阵 非标准二次型 f(x1,x2)=x12−4x1x2−x22f(x_{1},x_{2}) = x_{1}^{2} -4x_{1}x_{2}-x^{2}_{2}f(x1,x2)=x12−4x1x2−x22 令 A=(1−2−2−1),X=(x1x2x3)\boldsymbol{A} = \left( \begin{smallmatrix} 1 & -2 \\ -2 & -1 \end{smallmatrix} \right), \boldsymbol{X} = \left( \begin{smallmatrix} x_{1} \\ x_{2} \\ x_{3} \\ \end{smallmatrix} \right)A=(1−2−2−1),X=(x1x2x3),则 f=X⊺AXf = \boldsymbol{X}^{\intercal}\boldsymbol{AX}f=X⊺AX,此时,A\boldsymbol{A}A 为对称而非对角矩阵
f=X⊺AX{标准二次型⇔A为对角矩阵非标准二次型⇔A为对称而不对角矩阵f= \boldsymbol{X}^{\intercal}\boldsymbol{AX} \begin{cases} \text{标准二次型} \Leftrightarrow \boldsymbol{A}\text{为对角矩阵} \\ \text{非标准二次型} \Leftrightarrow \boldsymbol{A}\text{为对称而不对角矩阵} \\ \end{cases}f=X⊺AX{标准二次型⇔A为对角矩阵非标准二次型⇔A为对称而不对角矩阵
将对称而不对角的 A\boldsymbol{A}A 转化为对角 A\boldsymbol{A}A 的过程
Notes λ\lambdaλ 不一定为实数 矩阵的迹 a11+a22+⋯+ann≜tr(A)a_{11} + a_{22} + \cdots + a_{nn} \triangleq \text{tr}(\boldsymbol{A})a11+a22+⋯+ann≜tr(A) det(λE−A)=0⇒λ1,⋯ ,λn\det(\lambda \boldsymbol{E} - \boldsymbol{A}) = 0 \Rightarrow \lambda_{1},\cdots, \lambda_{n}det(λE−A)=0⇒λ1,⋯,λn ∑i=1nλi=tr(A)\sum\limits_{i=1}^{n} \lambda_{i} = \text{tr}(\boldsymbol{A})i=1∑nλi=tr(A) ∏i=1nλi=det(A)\prod\limits_{i=1}^{n} \lambda_{i} = \det(\boldsymbol{A})i=1∏nλi=det(A) det(A)=∏i=1nλi\det(\boldsymbol{A}) = \prod\limits_{i=1}^{n}\lambda_{i}det(A)=i=1∏nλi Case 1 A\boldsymbol{A}A 可逆 ⇔\Leftrightarrow⇔ det(A)≠0\det(\boldsymbol{A})\ne 0det(A)=0 ⇔\Leftrightarrow⇔ λi≠0(1≤i≤)\lambda_{i}\ne 0\quad (1\le i \le)λi=0(1≤i≤) ⇔\Leftrightarrow⇔ A\boldsymbol{A}A 满秩 Case 2 A\boldsymbol{A}A 不可逆 ⇔\Leftrightarrow⇔ det(A)=0\det(\boldsymbol{A})= 0det(A)=0 ⇔\Leftrightarrow⇔ ∃ λi=0(1≤i≤)\exists\ \lambda_{i} = 0\quad (1\le i \le)∃ λi=0(1≤i≤) ⇔\Leftrightarrow⇔ A\boldsymbol{A}A 降秩 若 λ0\lambda_{0}λ0 为特征值,其对应的特征向量,即 (λ0E−A)X=0(\lambda_{0}\boldsymbol{E} - \boldsymbol{A})\boldsymbol{X} = \boldsymbol{0}(λ0E−A)X=0 的非零解
Notes
λ\lambdaλ 不一定为实数 矩阵的迹 a11+a22+⋯+ann≜tr(A)a_{11} + a_{22} + \cdots + a_{nn} \triangleq \text{tr}(\boldsymbol{A})a11+a22+⋯+ann≜tr(A) det(λE−A)=0⇒λ1,⋯ ,λn\det(\lambda \boldsymbol{E} - \boldsymbol{A}) = 0 \Rightarrow \lambda_{1},\cdots, \lambda_{n}det(λE−A)=0⇒λ1,⋯,λn ∑i=1nλi=tr(A)\sum\limits_{i=1}^{n} \lambda_{i} = \text{tr}(\boldsymbol{A})i=1∑nλi=tr(A) ∏i=1nλi=det(A)\prod\limits_{i=1}^{n} \lambda_{i} = \det(\boldsymbol{A})i=1∏nλi=det(A) det(A)=∏i=1nλi\det(\boldsymbol{A}) = \prod\limits_{i=1}^{n}\lambda_{i}det(A)=i=1∏nλi Case 1 A\boldsymbol{A}A 可逆 ⇔\Leftrightarrow⇔ det(A)≠0\det(\boldsymbol{A})\ne 0det(A)=0 ⇔\Leftrightarrow⇔ λi≠0(1≤i≤)\lambda_{i}\ne 0\quad (1\le i \le)λi=0(1≤i≤) ⇔\Leftrightarrow⇔ A\boldsymbol{A}A 满秩 Case 2 A\boldsymbol{A}A 不可逆 ⇔\Leftrightarrow⇔ det(A)=0\det(\boldsymbol{A})= 0det(A)=0 ⇔\Leftrightarrow⇔ ∃ λi=0(1≤i≤)\exists\ \lambda_{i} = 0\quad (1\le i \le)∃ λi=0(1≤i≤) ⇔\Leftrightarrow⇔ A\boldsymbol{A}A 降秩 若 λ0\lambda_{0}λ0 为特征值,其对应的特征向量,即 (λ0E−A)X=0(\lambda_{0}\boldsymbol{E} - \boldsymbol{A})\boldsymbol{X} = \boldsymbol{0}(λ0E−A)X=0 的非零解
Proof ⇒\Rightarrow⇒ A∼B⇒B=P−1APdet(λE−B)=det(λE−P−1AP)=det(λP−1P−P−1AP)=det(P−1(λE−A)P)=det(P−1)det(λE−A)det(P)∵det(P−1)det(P)=1∴det(λE−B)=det(λE−A)=0 \begin{array}{ll} & \boldsymbol{A} \sim \boldsymbol{B} \Rightarrow \boldsymbol{B} = \boldsymbol{P}^{-1}\boldsymbol{AP} \\ & \det(\lambda \boldsymbol{E} - \boldsymbol{B}) = \det(\lambda \boldsymbol{E} - \boldsymbol{P}^{-1}\boldsymbol{AP}) \\ & = \det(\lambda \boldsymbol{P}^{-1}\boldsymbol{P} - \boldsymbol{P}^{-1}\boldsymbol{AP}) \\ & = \det(\boldsymbol{P}^{-1}(\lambda \boldsymbol{E} - \boldsymbol{A}) \boldsymbol{P}) \\ & = \det(\boldsymbol{P}^{-1})\det(\lambda\boldsymbol{E} - \boldsymbol{A})\det(\boldsymbol{P}) \\ \because & \det(\boldsymbol{P}^{-1})\det(\boldsymbol{P}) = 1 \\ \therefore & \det(\lambda \boldsymbol{E} - \boldsymbol{B}) = \det(\lambda \boldsymbol{E} - \boldsymbol{A}) = 0 \\ \end{array} ∵∴A∼B⇒B=P−1APdet(λE−B)=det(λE−P−1AP)=det(λP−1P−P−1AP)=det(P−1(λE−A)P)=det(P−1)det(λE−A)det(P)det(P−1)det(P)=1det(λE−B)=det(λE−A)=0 ⇍\nLeftarrow⇍ 反例 A=(200000000),B=(012001002)\boldsymbol{A} = \left( \begin{matrix} 2 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ \end{matrix} \right), \boldsymbol{B} = \left( \begin{matrix} 0 & 1 & 2 \\ 0 & 0 & 1 \\ 0 & 0 & 2 \\ \end{matrix} \right)A=⎝⎛200000000⎠⎞,B=⎝⎛000100212⎠⎞
Proof
⇒\Rightarrow⇒ A∼B⇒B=P−1APdet(λE−B)=det(λE−P−1AP)=det(λP−1P−P−1AP)=det(P−1(λE−A)P)=det(P−1)det(λE−A)det(P)∵det(P−1)det(P)=1∴det(λE−B)=det(λE−A)=0 \begin{array}{ll} & \boldsymbol{A} \sim \boldsymbol{B} \Rightarrow \boldsymbol{B} = \boldsymbol{P}^{-1}\boldsymbol{AP} \\ & \det(\lambda \boldsymbol{E} - \boldsymbol{B}) = \det(\lambda \boldsymbol{E} - \boldsymbol{P}^{-1}\boldsymbol{AP}) \\ & = \det(\lambda \boldsymbol{P}^{-1}\boldsymbol{P} - \boldsymbol{P}^{-1}\boldsymbol{AP}) \\ & = \det(\boldsymbol{P}^{-1}(\lambda \boldsymbol{E} - \boldsymbol{A}) \boldsymbol{P}) \\ & = \det(\boldsymbol{P}^{-1})\det(\lambda\boldsymbol{E} - \boldsymbol{A})\det(\boldsymbol{P}) \\ \because & \det(\boldsymbol{P}^{-1})\det(\boldsymbol{P}) = 1 \\ \therefore & \det(\lambda \boldsymbol{E} - \boldsymbol{B}) = \det(\lambda \boldsymbol{E} - \boldsymbol{A}) = 0 \\ \end{array} ∵∴A∼B⇒B=P−1APdet(λE−B)=det(λE−P−1AP)=det(λP−1P−P−1AP)=det(P−1(λE−A)P)=det(P−1)det(λE−A)det(P)det(P−1)det(P)=1det(λE−B)=det(λE−A)=0 ⇍\nLeftarrow⇍ 反例 A=(200000000),B=(012001002)\boldsymbol{A} = \left( \begin{matrix} 2 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ \end{matrix} \right), \boldsymbol{B} = \left( \begin{matrix} 0 & 1 & 2 \\ 0 & 0 & 1 \\ 0 & 0 & 2 \\ \end{matrix} \right)A=⎝⎛200000000⎠⎞,B=⎝⎛000100212⎠⎞
Notes P−1AP=B⇒[(P−1)⊺]−1A⊺(P−1)⊺=B⊺⇒A⊺∼B⊺P−1AP=B⇒P−1A−1P=B−1⇒A−1∼B−1P−1A−1P=B⇒P−1det(A)A−1P=det(B)B−1⇒P−1A∗P=B∗⇒A∗∼B∗\begin{array}{ll} \boldsymbol{P}^{-1}\boldsymbol{AP} = \boldsymbol{B} \Rightarrow [(\boldsymbol{P^{-1}})^{\intercal}]^{-1}\boldsymbol{A}^{\intercal}(\boldsymbol{P^{-1}})^{\intercal} = \boldsymbol{B}^{\intercal} \\ \Rightarrow \boldsymbol{A}^{\intercal}\sim \boldsymbol{B}^{\intercal} \\\\ \boldsymbol{P}^{-1}\boldsymbol{AP} = \boldsymbol{B} \Rightarrow \boldsymbol{P}^{-1}\boldsymbol{A}^{-1}\boldsymbol{P} = \boldsymbol{B}^{-1} \\ \Rightarrow \boldsymbol{A}^{-1}\sim \boldsymbol{B}^{-1} \\\\ \boldsymbol{P}^{-1}\boldsymbol{A}^{-1}\boldsymbol{P} = \boldsymbol{B} \Rightarrow \boldsymbol{P}^{-1}\det(\boldsymbol{A})\boldsymbol{A}^{-1}\boldsymbol{P} = \det(\boldsymbol{B})\boldsymbol{B}^{-1} \\ \Rightarrow \boldsymbol{P}^{-1}\boldsymbol{A}^{*}\boldsymbol{P} = \boldsymbol{B}^{*}\Rightarrow \boldsymbol{A}^{*}\sim \boldsymbol{B}^{*} \\\\ \end{array}P−1AP=B⇒[(P−1)⊺]−1A⊺(P−1)⊺=B⊺⇒A⊺∼B⊺P−1AP=B⇒P−1A−1P=B−1⇒A−1∼B−1P−1A−1P=B⇒P−1det(A)A−1P=det(B)B−1⇒P−1A∗P=B∗⇒A∗∼B∗
P−1AP=B⇒[(P−1)⊺]−1A⊺(P−1)⊺=B⊺⇒A⊺∼B⊺P−1AP=B⇒P−1A−1P=B−1⇒A−1∼B−1P−1A−1P=B⇒P−1det(A)A−1P=det(B)B−1⇒P−1A∗P=B∗⇒A∗∼B∗\begin{array}{ll} \boldsymbol{P}^{-1}\boldsymbol{AP} = \boldsymbol{B} \Rightarrow [(\boldsymbol{P^{-1}})^{\intercal}]^{-1}\boldsymbol{A}^{\intercal}(\boldsymbol{P^{-1}})^{\intercal} = \boldsymbol{B}^{\intercal} \\ \Rightarrow \boldsymbol{A}^{\intercal}\sim \boldsymbol{B}^{\intercal} \\\\ \boldsymbol{P}^{-1}\boldsymbol{AP} = \boldsymbol{B} \Rightarrow \boldsymbol{P}^{-1}\boldsymbol{A}^{-1}\boldsymbol{P} = \boldsymbol{B}^{-1} \\ \Rightarrow \boldsymbol{A}^{-1}\sim \boldsymbol{B}^{-1} \\\\ \boldsymbol{P}^{-1}\boldsymbol{A}^{-1}\boldsymbol{P} = \boldsymbol{B} \Rightarrow \boldsymbol{P}^{-1}\det(\boldsymbol{A})\boldsymbol{A}^{-1}\boldsymbol{P} = \det(\boldsymbol{B})\boldsymbol{B}^{-1} \\ \Rightarrow \boldsymbol{P}^{-1}\boldsymbol{A}^{*}\boldsymbol{P} = \boldsymbol{B}^{*}\Rightarrow \boldsymbol{A}^{*}\sim \boldsymbol{B}^{*} \\\\ \end{array}P−1AP=B⇒[(P−1)⊺]−1A⊺(P−1)⊺=B⊺⇒A⊺∼B⊺P−1AP=B⇒P−1A−1P=B−1⇒A−1∼B−1P−1A−1P=B⇒P−1det(A)A−1P=det(B)B−1⇒P−1A∗P=B∗⇒A∗∼B∗