Section02_易算行列式

  1. 对角线,下三角,上三角 a110a220ann=a110a22ann=a11a220ann=i=1naii \left\vert \begin{matrix} a_{11} & & & \huge0 \\ & a_{22} & & \\ & & \ddots & \\ \huge0 & & & a_{nn} \\ \end{matrix} \right\vert= \left\vert \begin{matrix} a_{11} & & & \huge0 \\ & a_{22} & & \\ & & \ddots & \\ \huge * & & & a_{nn} \\ \end{matrix} \right\vert = \left\vert \begin{matrix} a_{11} & & & \huge * \\ & a_{22} & & \\ & & \ddots & \\ \huge 0 & & & a_{nn} \\ \end{matrix} \right\vert = \prod_{i=1}^{n}a_{ii}
  2. 范氏行列式 Vn111a1a2ana12a22an2a1n1a2n1ann1=1j<in(aiaj) V_{n} \triangleq \left\vert \begin{matrix} 1 & 1 & \cdots & 1 \\ a_{1} & a_{2} & \cdots & a_{n} \\ a^{2}_{1} & a^{2}_{2} & \cdots & a^{2}_{n} \\ \vdots & \vdots & \ddots & \vdots \\ a^{n-1}_{1} & a^{n-1}_{2} & \cdots & a^{n-1}_{n} \\ \end{matrix} \right\vert = \prod_{1\le j<i \le n}^{}(a_{i}-a_{j})
    • Vn0a1,,an均为单值(即各不相等)V_{n}\ne 0 \Leftrightarrow a_{1},\cdots,a_{n}\text{均为单值(即各不相等)}
  3. 分块行列式 A00B=A0B=A0B=AB \left\vert \begin{matrix} A & 0 \\ 0 & B \end{matrix} \right\vert =\left\vert \begin{matrix} A & * \\ 0 & B \end{matrix} \right\vert = \left\vert \begin{matrix} A & 0 \\ * & B \end{matrix} \right\vert = \vert A \vert \vert B \vert

results matching ""

    No results matching ""